9 Referências bibliográficas

- ¹ PORTAL GÁS E ENERGIA: gás natural. Disponível em: http://www.gasenergia.com.br/portal/port/noticias/artigos/expectativa. jsp. acesso em: 17 maio 2003
- ² PORTAL GÁS E ENERGIA: artigo técnico por Flavio Santos Tojal. Disponível em: http://www.gasenergia.com.br/portal/port/noticias/artigos/expectativa. jsp. acesso em: 17 maio 2003
- ³ TAREK AHMED, Reservoir Engineering Handbook, 2000
- ⁴ H. DALE BEGGS, Production Optimization, Using Nodal Analysis,1991
- ⁵ AL-HUSSAINY, R., RAMEY, H.J. Jr. and CRAWFORD, P.b., 1966. The Flow of Real Gases Through Porous Media. J. Pet. Tech., May: 624-636. Trans. AIME.
- ⁶ CHARLES R. SMITH, G. M. TRACY, R. LANCE FARRAR, Applied Reservoir Engineering, Volume1, 1992.
- ⁷ CULLENDER, M. H. The Isochronal Performance Method of Determining the Flow Characteristics of Gas Wells. Trans. AIME, 1995.
- ⁸ JONES L. G., BLOUNT E. M. and GLAZE O. H. Use of Short Term Multiple Rate Flow Tests to Predict Performance of Wells Having Turbulence. Paper SPE 6133, 1976.
- ⁹ H. DALE BEGGS, Gas Production Operations, 1984
- ¹⁰ CHI U. IKOKU, Natural Gas Production Engineering, 1984
- ¹¹ MICHAEL J. ECONOMIDES, A. DANIEL HILL, CHRISTINE EHLIG-ECONOMIDES, Petroleum Production System, 1994.
- ¹² SUNJAY KUMAR, Gas Production Engineering , 1987
- ¹³ JOE MACH, EDUARDO PROAÑO, KERMIT E. BROWN, A Nodal Approach for Applying Systems Analysis to the Flowing and Artificial Lift Oil or Gas Well, , SPE 8025, 1979
- ¹⁴ KERMIT E. BROWN, Nodal AND JAMES F. LEA, System Analysis of Oil and Gas Wells, SPE 14014, 1985

- ¹⁵ R.M FREAR JR., STONEWALL GAS CO., AND J.P. YU AND J.R. BLAIR, Application of Nodal Analysis in Appalachian Gas Wells, , West Virginia U., SPE 17061, 1987
- ¹⁶ GILBERT W. E., Flowing and Gas Lift Well Performance, API Drill. Prod. Practice, 1954
- ¹⁷ Nind. T. E. W. , Principles of Oil Well Production, 1964
- ¹⁸ KERMIT E. BROWN, The Technology of Artificial Lift Methods, Volume 4 Production Optimization of Oil and Gas Wells by Nodal Systems Analysis, 1978
- ¹⁹ OSWALDO A. PEDROSA JR., Engenharia do Gás Natural, by Pontifícia Universidade Católica, 2002
- ²⁰ ADALBERTO JOSÉ ROSA, RENATO DE SOUZA CARVALHO, Previsão de Comportamento de Reservatórios de Petróleo, 2002
- ²¹ B.C. CRAFT Y M. F. HAWKINS, Ingeniería Aplicada de Yacimientos Petrolíferos, 1977
- ²² GAS PROCESSORS SUPPLIERS ASSOCIATION, Engineering Data Book , Volume 2, Tenth Edition, 1987
- ²³ DOUG BOONE & JOE CLEGG, Petroleum Engineering "Tool Kit", Programs for Spreadshee,Software, , 1997

APÊNDICE A Propriedades Do Gás Natural

Na análise do comportamento total de um sistema de produção é muito importante o conhecimento da composição e das propriedades físico-químicas do fluido que será produzido para que se possa aplicar o método adequado na otimização do poço.

A.1 Gás natural

É uma mistura de hidrocarbonetos gasosos, presentes na forma natural nas estruturas subterrâneas¹⁹. O gás natural consiste principalmente de *metano* (80%) e proporções significativas de *etano, propano, butano, pentano* e pequenas quantidades de *hexano, heptano* e frações mais pesadas. Esta mistura de hidrocarbonetos gasosos apresentam algumas impurezas, principalmente de: *nitrogênio* (N_2) , *dióxido de carbono* (CO_2) e gás sulfídrico (H_2S) .

A.1.1 Composição do gás natural

Composição típica:

- Metano (CH_4) \rightarrow usualmente > 80%
- etano $(C_2H_6) \rightarrow 2 a 10\%$
- outros hidrocarbonetos:

propano (C_3H_8) , isobutano $(i - C_4H_{10})$, butano normal $(n - C_4H_{10})$, isopentano $(i - C_5H_{12})$, pentano normal $(n - C_5H_{12})$, hexano (C_6H_{14}) , frações mais pesadas $(C_7H_{16}^+)$;

- hidrocarbonetos cíclicos e aromáticos: ocasionalmente podem ocorrer em pequenas proporções;
- Impurezas comuns: nitrogênio (N_2) , dióxido de carbono (CO_2) e gás sulfídrico (H_2S)

A.2 Lei dos gases ideais

Um gás ideal⁹ é um fluido em que:

- O volume ocupado pelas moléculas é pequeno em relação ao volume ocupado pelo fluido total.
- As colisões intermoleculares são inteiramente elásticas, não ocorrendo portanto perda de energia na colisão.
- ♣ Não tem forças atrativas ou repulsivas entre as moléculas.

A lei dos gases ideais é representada como segue:

$$pV = nRT$$
 $eq.(A.1)$

onde

р	=	Pressão absoluta, psia
V	=	<i>Volume, ft^3</i>
Т	=	Temperatura absoluta, °R
п	=	Número de libras-mol, onde 1 lb-mol é o peso
		molecular do gás (lb)
R	=	Constante universal dos gases, para as unidades de
		cima tem o valor de:
		$(14.7 psia)(379.4 ft^3)$ 10.72 main $\frac{4^3}{10}$ mol 8 P
		$\frac{1}{(1lb - mol)(520^{\circ} R)} = 10.73 psia ft^{-1} / lb - mol^{-1} R$

Os valores da Constante do gás *R* em diferentes unidades, mostramos na *tabela A.1.*

O número de *lb-mol* de um gás é igual à massa de gás dividido por o peso molecular do gás, a lei ideal do gás pode ser expressada como:

$$pV = \frac{m}{M}RT \qquad eq.(A.2)$$

onde

m = massa do gás, lb M = peso molecular do gás, lbm/lb - mol

Unidades	R
$atm, cc/g - mole, ^{\circ}K$	82.06
$BTU/lb-mole,^{\circ}R$	1.987
$psia, cu ft/lb - mole, ^{\circ}R$	10.73
lb/sq ft abs, cu ft/lb – mole, ° R	1544
$atm, cu ft/lb - mole, ^{\circ}R$	0.730
$mm Hg, liters/g - mole, ^{\circ} K$	62.37
in. Hg, cu ft/lb – mole, ° R	21.85
cal/g – mole, ° K	1.987
$kPa, m^3/kg - mole, ^{\circ}K$	8.314
J/kg – mole, ° K	8314

Valores da Constante do Gás, R

TABELA A.1

Fonte: Gas Production Operations, 1985

A.2.1 Peso molecular aparente

Uma mistura gasosa comporta-se como se fosse um gás puro com um peso molecular⁹ definido. Este peso molecular é conhecido como um peso molecular aparente e é definido como:

$$M_a = \sum y_i M_i \qquad eq.(A.3)$$

onde

$$M_a$$
 = Peso molecular aparente da mistura.
 y_i = Fração molar do componente i.
 M_i = Peso molecular do componente i.

O peso molecular de cada componente *i* pode ser encontrado na *tabela A.2*.

A.2.2 Densidade do gás

A densidade do gás⁹, por definição, é a relação entre as massas específicas do gás e do ar, ambas medidas nas mesmas condições de pressão e temperatura¹, isto é:

$$\gamma_g = \frac{\rho_g}{\rho_{ar}} \qquad eq.(A.4)$$

Admitindo-se o comportamento de gás ideal, na *equação* A.1, o número de moles n é a relação entre a massa de gás m e a sua massa molecular M, *equação* A.2. A massa específica é definida como, a relação entre a massa e o volume, ou seja:

$$\rho_g = \frac{m}{V} = \frac{pM}{RT} \qquad eq.(A.5)$$

E a massa específica do ar é:

$$\rho_{ar} = \frac{p_{sc} \ 28.97}{RT} \qquad eq.(A.6)$$

Portanto, a densidade de um gás é:

$$\gamma_{g} = \frac{\rho_{gas}}{\rho_{ar}} = \frac{\frac{p_{sc} M}{RT}}{\frac{p_{sc} 28.97}{RT}} = \frac{M}{28.97}$$
 eq.(A.7)

1 /

onde

$$\gamma_g = Densidade do gás$$

 $M = Peso Molecular, lbm/lb - mol$
 $p_{sc} = Pressão a condições normais, psia$
28.97 = Peso Molecular do ar

A.2.3 Volume normal

Em muitos cálculos de gás natural, é conveniente a medição do volume ocupado por 1 lb-mol de gás numa pressão e temperatura de referência. Estas condições de referência são normalmente 14.7 psia e $60^{\circ}F^{3}$, comunmente referidas a condições normais. O volume normal é definido como o volume de gás ocupado por 1 lb-mol de gás nas condições normais. aplicando as condições de acima na *equação A.1*, o volume normal é:

$$V_{sc} = \frac{(1)RT_{sc}}{p_{sc}} = \frac{(1)(10.73)(520)}{14.7} = 379.4 \, scf/lb - mol \ eq.(A.8)$$

onde

$$V_{sc} = Volume normal, scf/lb-mol$$

 $scf = Pé$ cubico normal
 $T_{sc} = Temperatura normal, °R$
 $p_{sc} = Pressão normal, psia$

A.3 Gases reais

Na prática os gases não se comportam de acordo com a lei definida pela equação A.1 para as pressões e temperaturas de trabalho. O comportamento do gás natural se desvia bastante do ideal quando submetido às elevadas pressões e temperaturas dos reservatórios de petróleo. Para expressar de forma mais real a relação entre as variáveis p, V e T, um fator de correção, denominado fator de compressibilidade de gás, Z, é introduzido na *equação* A.1:

$$pV = ZnRT$$
 $eq.(A.9)$

Onde, para um gás ideal Z = 1.

O fator de compressibilidade varia com a mudança de temperatura e pressão na composição do gás. Este deve ser determinado experimentalmente. Os resultados na determinação experimental do fator de compressibilidade são normalmente dados graficamente e normalmente tomam a forma na *figura A.1*.

N°	Componente	Formula	Peso Molecular, lb _n /lb mole	Ponto de Ebulição °F, 14.696 psia	Pressão de vapor, 100°F, psia	Pressão Critica, psia	Temperatura Crítica, °F	Volume Crítico, cu ft/lb
1	Methane	CH_4	16.043	-258.73	(5000)	666.4	-116.67	0.0988
2	Ethane	C_2H_6	30.070	-127.49	(800)	706.5	89.92	0.0783
3	Propane	C_3H_8	44.097	-43.75	188.64	616.0	206.06	0.0727
4	Isobutane	$C_{4}H_{10}$	58.123	10.78	72.581	527.9	274.46	0.0714
5	n-Butane	$C_{4}H_{10}$	58.123	31.08	51.706	550.6	305.62	0.0703
6	Isopentane	$C_{5}H_{12}$	72.150	82.12	20.445	490.4	369.10	0.0679
7	n-Pentane	$C_{5}H_{12}$	72.150	96.92	15.574	488.6	385.8	0.0675
8	Neopentane	$C_{5}H_{12}$	72.150	49.10	36.69	464.0	321.13	0.0673
9	n-Hexane	$C_{6}H_{14}$	86.177	155.72	4.9597	436.9	453.6	0.0688
10	2-Methylpentane	$C_{6}H_{14}$	86.177	140.47	6.769	436.6	435.83	0.0682
11	3-Methylpentane	$C_{6}H_{14}$	86.177	145.89	6.103	453.1	448.4	0.0682
12	Neohexane	$C_{6}H_{14}$	86.177	121.52	9.859	446.8	420.13	0.0667
13	2,3-Dimethylbutane	$C_{6}H_{14}$	86.177	136.36	7.406	453.5	440.29	0.0665
14	n-Heptane	$C_7 H_{16}$	100.204	209.16	1.620	396.8	512.7	0.0691
15	2-Methylhexane	$C_7 H_{16}$	100.204	194.09	2.272	396.5	495.00	0.0673
16	3-Methylhexane	$C_7 H_{16}$	100.204	197.33	2.131	408.1	503.80	0.0646
17	3-Ethylpentane	$C_7 H_{16}$	100.204	200.25	2.013	419.3	513.39	0.0665
18	2,2-Dimethylpentane	$C_7 H_{16}$	100.204	174.54	3.494	402.2	477.23	0.0665
19	2,4-Dimethylpentane	$C_7 H_{16}$	100.204	176.89	3.293	396.9	475.95	0.0668
20	3,3-Dimethylpentane	$C_7 H_{16}$	100.204	186.91	2.774	427.2	505.87	0.0662

TABELA A. 2 Propriedades Físicas de Hidrocarbonetos

N°	Componente	Formula	Peso Molecular, , lb _m /lb mole	Ponto de Ebulição °F, 14.696 psia	Pressão de Vapor, 100°F, psia	Pressão Crítica ,psia	Temperatura Crítica °F	Volume Crítico, cu ft/lb
21	Triptane	$C_7 H_{16}$	100.204	177.58	3.375	428.4	496.44	0.0636
22	n-Octane	$C_{8}H_{18}$	114.231	258.21	0.5369	360.7	564.22	0.0690
23	Diisobutyl	$C_{8}H_{18}$	114.231	228.39	1.102	360.6	530.44	0.0676
24	Isooctane	$C_{8}H_{18}$	114.231	210.63	1.709	372.4	519.46	0.0656
25	n-Nonane	$C_{9}H_{20}$	128.258	303.47	0.1795	331.8	610.68	0.0684
26	n-Decane	$C_{10}H_{22}$	142.285	345.48	0.0608	305.2	652.0	0.0679
27	Cyclopentane	$C_{5}H_{10}$	70.134	120.65	9.915	653.8	461.2	0.0594
28	Methylcyclopentane	$C_6 H_{12}$	84.161	161.25	4.503	548.9	499.35	0.0607
29	Cyclohexane	$C_{6}H_{12}$	84.161	177.29	3.266	590.8	536.6	0.0586
30	Methylcyclohexane	$C_{7}H_{14}$	98.188	213.68	1.609	503.5	570.27	0.0600
31	Ethene (Ethylene)	C_2H_4	28.054	-		731.0	48.54	0.0746
32	Propene (Propylene)	C_3H_6	42.081	-53.84	227.7	668.6	197.17	0.0689
33	1-Butene (Butylene)	C_4H_8	56.108	20.79	62.10	583.5	295.48	0.0685
34	Cis-2-Butene	C_4H_8	56.108	38.69	45.95	612.1	324.37	0.0668
35	Trans-2-Butene	C_4H_8	56.108	33.58	49.89	587.4	311.86	0.0679
36	Isobutene	C_4H_8	56.108	19.59	63.02	580.2	292.55	0.0682
37	1-Pentene	$C_{5}H_{10}$	70.134	85.93	19.12	511.8	376.93	0.0676
38	1,2-Butadiene	C_4H_6	54.092	51.53	36.53	(653)	(340)	(0.065
39	1,3-Butadiene	C_4H_6	54.092	24.06	59.46	627.5	305	0.0654
40	Isoprene	C_5H_8	68.119	93.31	16.68	(558)	(412)	(0.065
41	Acetylene	C_2H_2	26.038	- 120 49		890.4	95.34	0.0695
42	Benzene	C_6H_6	78.114	176.18	3.225	710.4	552.22	0.0531
43	Toluene	C_7H_8	92.141	231.13	1.033	595.5	605.57	0.0550
44	Ethylbenzene	$C_8 H_{10}$	106.167	277.16	0.3716	523.0	651.29	0.0565
45	o-Xylene	$C_8 H_{10}$	106.167	291.97	0.2643	541.6	674.92	0.0557

TABELA A.2 Propriedades Físicas de Hidrocarbonetos (Continuação)

N°	Componente	Formula	Peso Molecular, , l b_m/lb mole	Ponto de Ebulição °F, 14.696 psia	Pressão de Vapor, 100°F, psia	Pressão Critica, psia	Temperatura Crítica, °F	Volume Crítico, cu ft/lb
46	m-Xylene	$C_8 H_{10}$	106.167	282.41	0.3265	512.9	651.02	0.0567
47	p-Xylene	$C_8 H_{10}$	106.167	281.07	0.3424	509.2	649.54	0.0570
48	Styrene	C_8H_8	104.152	293.25	0.2582	587.8	703	0.0534
49	Isopropylbenzene	$C_{9}H_{12}$	120.194	306.34	0.1884	465.4	676.3	0.0572
50	Methyl alcohol	CH_4O	32.042	148.44	4.629	1174	463.08	0.0590
51	Ethyl alcohol	C_2H_6O	46.069	172.90	2.312	890.1	465.39	0.0581
52	Carbon monoxide	CO	28.010	-312.68		507.5	-220.43	0.0532
53	Carbon dioxide	CO_2	44.010	-109.257		10/1	87.91	0.0344
54	Hydrogen sulfide	H_2S	34.08	-76.497	394.59	1300	212.45	0.0461
55	Sulfur dioxide	SO_2	64.06	14.11	85.46	1143	315.8	0.0305
56	Ammonia	NH_3	17.0305	-27.99	211.9	1646	270.2	0.0681
57	Air	$N_2 + O_2$	28.9625	-317.8		546.9	-221.31	0.0517
58	Hydrogen	H_2	2.0159	-422.955		188.1	-399.9	0.5165
59	Oxygen	O_2	31.9988	-297.332		731.4	-181.43	0.0367
60	Nitrogen	N_2	28.0134	-320.451		493.1	-232.51	0.0510
61	Chlorine	Cl_2	70.906	-29.13	157.3	1157	290.75	0.0280
62	Water	H_2O	18.0153	212.000	0.9501	3198.8	705.16	0.0497
63	Helium	Нē	4.0026	-452.09		32.99	-450.31	0.2300
64	Hydrogen	HCl	36.461	-121.27	906.71	1205	124.77	0.0356
	Chloride							

TABELA A.2 Propriedades Físicas de Hidrocarbonetos (Continuação)

Fonte: Engineering Data Book – Gas Processors Suppliers Association, 1987

Figura A.1 Gráfico típico do fator de compressibilidade como uma função de pressão a temperatura constante. Extraído de Gas Production Operation – H. Dale Beggs, 1985

A.3.1 Método de obtenção de Z

O aparecimento do teorema dos estados correspondentes, desenvolvido por *Van der Waals*¹⁰ (1873), possibilitou a criação de ábacos universais para a obtenção do fator de compressibilidade Z. Segundo esse teorema, todos os gases exibem o mesmo comportamento quando submetidos às mesmas condições de pressão, temperatura e volume reduzidos. O termo reduzido traduz a razão entre a variável e o seu valor crítico:

$$p_r = \frac{p}{p_c} \qquad eq.(A.10)$$

$$T_r = \frac{T}{T_c} \qquad eq.(A.11)$$

$$V_r = \frac{V}{V_c} \qquad eq.(A.12)$$

onde

p_r	=	Pressão reduzida.
T_r	=	Temperatura reduzida.
V _r	=	Volume reduzido.
p_c	=	Pressão crítica.
T_c	=	Temperatura crítica.
V _c	=	Volume crítico.

O teorema dos estados correspondentes não é perfeito, mas quando aplicado a gases com estruturas químicas similares (por exemplo: hidrocarbonetos parafínicos) oferece um método de correlação com precisão satisfatória para trabalhos de engenharia.

A.3.1.1 Correlações de Standing e Katz

A correlação de *Standing e Katz*^{19,20} fornece valores de Z em função de pressões e temperaturas reduzidas e foi desenvolvida com base em dados experimentais para gases naturais sem impurezas. Sua aplicabilidade para gases ácidos requer o uso de fatores de correção para a presença de CO_2 e H_2S .

O procedimento para a determinação de Z segue os seguintes passos:

Passo 1 - Determine as propriedades pseudo-críticas

- a. Composição conhecida
 - Da *Tabela A-2* determinar Peso Molecular, pressão e temperatura pseudo-críticas para cada componente.
 - Obter Massa molecular aparente (M_a) da mistura, *equação* A.3
 - Obter as coordenadas pseudo-críticas. Estas podem ser calculadas através da média ponderada das coordenadas críticas de cada componente com sua fração molar na mistura:

$$P_{Pc} = \sum_{i=1}^{n_c} y_i p_{ci} \qquad eq.(A.13)$$

$$T_{Pc} = \sum_{i=1}^{n_c} y_i T_{ci} \qquad eq.(A.14)$$

onde

P_{ci}	=	Pressão Pseudo-crítica do componente i.
T_{ci}	=	Temperatura Pseudo-crítica do componente i
y_i	=	Fração molar do componente i.
n _c	=	Número de componentes.

- b. Composição desconhecida
 - Com a densidade do gás conhecida, usar a *figura A.2*, onde a pressão e temperatura pseudo-críticas são dadas¹. Ou através das seguintes correlações apresentadas por Standing (1981):

$$P_{pc} = 677 - 15,0\gamma_g - 37,5\gamma_g^2 \qquad eq.(A.15)$$

$$T_{pc} = 168 + 325\gamma_g - 12.5\gamma_g^2 \qquad eq.(A.16)$$

Estas equações estão limitadas pelo conteúdo de impurezas presentes na mistura gasosa, os maiores percentuais são de 3% H_2S e 5% N_2 , ou um conteúdo total de impurezas de 7%.

Para contornar este obstáculo as propriedades obtidas podem ser corrigidas. Uma alternativa ao uso da *figura A.2* para o cálculo das propriedades pseudocríticas de misturas gasosas de hidrocarbonetos quando existe a presença de contaminantes, é o uso da *figura A.3*.

Figura A.2 Correlações para as coordenadas pseudo-críticas. Extraída de Previsão de Comportamento de Reservatórios de Petróleo – Adalberto José Rosa, Renato de Souza Carvalho, 2002.

Figura A.3 Propriedades pseudo-críticas do gás natural. Extraída de Previsão de Comportamento de reservatórios de Petróleo – Adalberto José Rosa, Renato de Souza Carvalho, 2002

Para gás natural seco, e:

$$P_{pc} = 706 - 51,7\gamma_g - 11,1\gamma_g^2 \qquad eq.(A.17)$$

$$T_{pc} = 187 + 330\gamma_g - 71,5\gamma_g^2 \qquad eq.(A.18)$$

Passo 2 - Correções das propriedades pseudo-críticas

 Devido a presença de gases não hidrocarbonetos, utilizando o fator de correção de Wichert e Aziz dado por:

$$\varepsilon = 120(A^{0,9} - A^{1,6}) + 15(B^{0,5} - B^{4,0})$$
 eq.(A.19)

onde

Е	=	Fator de ajuste das propriedades pseudo críticas
A	=	Suma das frações molares de $H_2S + CO_2$.
В	=	Fração molar de H_2S .

- Calcule a temperatura pseudo-crítica ajustada pela seguinte expressão:

$$T'_{Pc} = T_{Pc} - \varepsilon$$
 eq.(A.20)

- E a pressão pseudo-crítica ajustada por meio de:

$$P'_{Pc} = \frac{P_{Pc}T_{Pc}}{T_{Pc} + B(1-B)\varepsilon} \qquad eq.(A.21)$$

,

O parâmetro \mathcal{E} pode ser também obtido na figura A.4

Passo 3 - Fator de compressibilidade, Z

O fator de compressibilidade, Z, da mistura gasosa é obtido da carta de Standing & Katz, *figura A.5* em função das coordenadas pseudo-reduzidas, ou sejam:

$$p_{Pr} = \frac{p}{p_{Pc}} \qquad eq.(A.22)$$

$$T_{pr} = \frac{T}{T_{Pc}} \qquad eq.(A.23)$$

Ou, se houver presença de contaminantes:

$$p_{Pr} = \frac{p}{p'_{Pc}} \qquad eq.(A.24)$$

$$T_{pr} = \frac{T}{T'_{Pc}} \qquad eq.(A.25)$$

A.3.1.2 Correlações de Brill & Beggs

Uma modificação das equações publicadas por *Brill & Beggs*²⁰ (1974) fornece valores do fator Z com precisão suficiente para a maioria dos cálculos de engenharia:

$$Z = A + \frac{1-A}{\exp B} + C p_{\Pr}^{D} \qquad eq.(A.26)$$

onde

$$A = 1.39(T_{pr} - 0.92)^{0.5} - 0.36T_{pr} - 0.101 \qquad eq.(A.27)$$

$$B = \left(0.62 - 0.23T_{pr}\right)p_{pr} + \left(\frac{0.066}{T_{pr} - 0.86} - 0.037\right)p_{pr}^2 + \frac{0.32}{10^{9(T_{pr} - 1)}}p_{pr}^6 \quad eq.(A.28)$$

$$C = 0.132 - 0.32 \log T_{pr} \qquad eq.(A.29)$$

$$D = anti \log \left(0.3106 - 0.49T_{pr} + 0.1824T_{pr}^2 \right) \qquad eq.(A.30)$$

Figura A.4 Fator de ajuste da temperatura pseudo-crítica, ºF. Extraída de Previsão de Comportamento de Reservatórios de Petróleo – Adalberto José Rosa, Renato de Souza Carvalho, 2002

Figura A.5 Fator de compressibilidade Z para gases naturais. Extraída de Previsão do Comportamento de Reservatórios de Petróleo – Adalberto José Rosa, Renato de Souza Carvalho, 2002

A.3.1.3 Correlações de Dranchuk, Purvis e Robinson

Esse método se baseia na equação de estado desenvolvida por *Benedict, Webb and Rubin*¹⁰ para representar o comportamento de hidrocarbonetos leves. Utilizando essa equação, contendo oito constantes características de cada substância, *Dranchuk et al*¹⁹. obtiveram uma equação explícita da seguinte forma:

$$Z = 1 + \left(A_1 + \frac{A_2}{T_r} + \frac{A_3}{T_r^3}\right)\rho_r + \left(A_4 + \frac{A_5}{T_r}\right)\rho_r^2 + A_5A_6\frac{\rho_r^5}{T_r} + eq.(A.31)$$
$$\frac{A_7\rho_r^2}{T_r^3}\left(1 + A_8\rho_r^2\right)EXP\left(-A_8\rho_r^2\right)$$

onde

$$\rho_r = 0.27 \frac{P_r}{ZT_r} \qquad eq.(A.32)$$

e as constantes de correlação são dadas por:

$$A_1$$
=0,31506237 A_5 =-0,61232032 A_2 =-1,04670990 A_6 =-0,10488813 A_3 =-0,57832729 A_7 =0,68157001 A_4 =0,53530771 A_8 =0,68446549

A.3.1.4 Correlações de Hall-Yarborough

A equação de Hall-Yarborough^{19,20}, desenvolvida usando a equação de estado de Starling–Carnahan:

$$Z = \frac{0.06125P_{\text{Pr}} t e^{-1.2(1-t)^2}}{Y} \qquad eq.(A.33)$$

onde

 $P_{\text{Pr}} = Pressão pseudo-reduzida.$ $t = Reciproco, da temperatura reduzida (T_{Pc}/T)$ Y = Densidade reduzida com a qual pode ser obtida como a solução da equação.

$$F^{K} = -0,06125 P_{\text{Pr}} t e^{-1,2(1-t)^{2}} + \frac{Y + Y^{2} + Y^{3} - Y^{4}}{(1-Y)^{3}} - (14,76t - 9,76t^{2} + 4,58t^{3})Y^{2} + (90,7t - 242,2t^{2} + 42,4t^{3})Y^{(2,18+2,82t)} = 0 \qquad eq.(A.34)$$

Essa equação não linear pode ser convenientemente resolvida usando a técnica simples de iteração de Newton-Raphson. Os passos são:

- 1. Tomar uma estimativa inicial de Y^K , onde K é um contador de iteração. $Y^1 = 0,001$
- 2. Substitua esse valor na equação A.34 a menos que o valor correto de Y tenha que ser inicialmente selecionado, na equação A.34 seria um valor muito pequeno, valor de F^K diferente de zero.
- 3. Utilizando a primeira série de expansão de Taylor, uma melhor estimativa de Y pode ser determinada pela equação:

$$Y^{K+1} = Y^K - \frac{F^K}{dF^K/dY} \qquad eq.(A.35)$$

Onde a expressão geral para dF/dK pode ser obtida como a derivada da equação A.34

$$\frac{dF}{dY} = \frac{1+4Y+4Y^2-4Y^3+Y^4}{(1-Y)^4} - (29,52t-19,52t^2+9,16t^3)Y_{eq.(A.36)} + (2,18+2,82t)(90,7t-242,2t^2+42,4t^3)Y^{(1,18+2,82t)}$$

- 4. Iterar, usando a *equação A.34* e *A.35* até que haja convergência dentro de uma aproximação satisfatória. $F^K \approx 0$.
- Substitua esse valor correto de Y na *equação A.33*, para determinar valor de Z.

A.4 Fator volume de formação do gás natural

O fator de formação do gás natural²¹, relaciona o volume do gás avaliado nas condições do reservatório e o volume do mesmo medido nas condições

básicas de separação na superfície, p_{sc} e T_{sc} . Geralmente, expressa-se em pés cúbicos ou barris de volume no reservatório por pé cúbico de gás às condições normais, ou seus recíprocos, em pés cúbicos às condições normais por pé cúbico ou barril de volume no reservatório.

$$B_g = \frac{V_{p,T}}{V_{sc}} \qquad eq.(A.37)$$

De acordo com a equação de estado dos gases reais, *equação A.9*, o volume de uma determinada massa de gás m, equivalente a um número de moles, n, é dada em condições de reservatório, por:

$$V = \frac{ZnRT}{p} \qquad \qquad eq.(A.38)$$

onde T e p são a temperatura e a pressão do reservatório. Nas condições normais essa mesma massa de gás ocupa o volume:

$$V = \frac{Z_{sc} nRT_{sc}}{p_{sc}} \qquad eq.(A.39)$$

O fator volume-formação, na equação A.37, é:

$$B_g = \frac{\frac{ZnRT}{p}}{\frac{Z_{sc}nRT_{sc}}{p_{sc}}}$$

$$B_g = \frac{ZTp_{sc}}{Z_{sc}T_{sc}p} \frac{vol}{std\,vol} \qquad eq.(A.40)$$

Utilizando, $T_{sc} = 520^{\circ} R$, $p_{sc} = 14.7 psia$ e $Z_{sc} = 1$, a equação A.40 fica:

$$B_g = \frac{ZT(14.7)}{1(520)} = 0.0283 \frac{ZT}{p} ft^3 / scf \qquad eq.(A.41)$$

$$B_g = 0.00504 \frac{ZT}{p} bbls/scf \qquad eq.(A.42)$$

$$B_g = 35.35 \frac{p}{ZT} scf / ft^3 \qquad eq.(A.43)$$

$$B_g = 198.4 \frac{p}{ZT} scf/bbls \qquad eq.(A.44)$$

A.5 Compressibilidade isotérmica do gás natural

A compressibilidade isotérmica⁹ do gás natural, é definida como a mudança em volume, por unidade de volume, para uma unidade de mudança em pressão à temperatura constante.

$$C = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T \qquad eq.(A.45)$$

A compressibilidade é requerida em muitas equações de reservatórios de fluxo de gás e pode ser avaliada da seguinte maneira:

A.5.1 Compressibilidade para um gás ideal

$$V = \frac{nRT}{p}$$

е

$$\left(\frac{\partial V}{\partial p}\right)_T = -\frac{nRT}{p^2}$$

portanto

$$C_g = \left(-\frac{p}{nRT}\right) \left(-\frac{nRT}{p^2}\right)$$
$$C_g = \frac{1}{p}$$
eq.(A.46)

A.5.2 Compressibilidade para um gás real

$$V = \frac{nRTZ}{p} \quad e$$

$$\begin{pmatrix} \frac{\partial V}{\partial p} \end{pmatrix}_{T} = nRT \left(\frac{1}{p} \frac{\partial Z}{\partial p} - \frac{Z}{p^{2}} \right) \quad portanto$$

$$C_{g} = \left(-\frac{p}{nRTZ} \right) \left[nRT \left(\frac{1}{p} \frac{\partial Z}{\partial p} - \frac{Z}{p^{2}} \right) \right] \quad ou$$

$$C_{g} = \frac{1}{p} - \frac{1}{Z} \frac{\partial Z}{\partial p} \qquad eq.(A.47)$$

A avaliação do C_g para gases reais requer que se determine como o fator Z varia com a pressão, à pressão e temperatura de interesse. Porque a maioria dos gráficos e equações que determinam Z estão como uma função da pressão e temperatura reduzida. A compressibilidade reduzida tem sido definida como: $C_r = C_g p_c$. Esta pode ser expressada como uma função de p_r num valor fixo de T_r por:

$$C_r = \frac{1}{p_r} - \frac{1}{Z} \left(\frac{\partial Z}{\partial p_r} \right)_{T_r} \qquad eq.(A.48)$$

Valores de $(\partial Z/\partial p_r)_{T_r}$ podem ser obtidos da pendente de uma curva constante de T_r da *figura A.5* ao fator Z de interesse. Valores de C_rT_r como uma função de p_r e T_r tem sido apresentados graficamente por *Mattar, et al.* nas *figuras A.6 e A.7.* A mudança de Z com p pode também ser calculada utilizando uma expressão analítica calculando o fator Z a pressões ligeiramente acima e abaixo da pressão de interesse.

$$\left(\frac{\partial Z}{\partial p_r}\right)_{T_r} = \left(\frac{Z_1 - Z_2}{p_{r1} - p_{r2}}\right)_{T_r} \qquad eq.(A.49)$$

A.6 Viscosidade do gás natural

A viscosidade^{3,9,20} absoluta de um gás natural varia com a composição e com as condições de pressão e temperatura:

$$\mu = f(p, T, composição)$$

Normalmente é expressada em centipoises ou poises, mas pode ser convertida para outras unidades:

$$1 \text{ poise} = 100 \text{ centipoise} = 6.72 \text{ x} 10^{-2} \text{ lbm/ ft} - \sec = 2.09 \text{ x} 10^{-3} \text{ lbf} - \sec/\text{ft}^2 = 0.1 \text{ kg/m} - \sec$$

A.6.1 Determinação da viscosidade através do método de Carr, Kobayashi e Burrows

É a relação mais amplamente utilizada na indústria de petróleo.

Passo 1 - Determine a viscosidade do gás à pressão atmosférica utilizando a *figura A.8*

$$\mu_1 = f(M,T)$$

O peso molecular *M* leva em consideração a influência da composição do gás na determinação da viscosidade μ_1 .

 $\it Passo~2~$ - Faça correções para a presença de $\,N_2\,$, $CO_2\,$ e $\,H_2S$.

 $(\mu_1)_{cor} = \mu_1 + correção H_2S + correção CO_2 + correção N_2 eq.(A.50)$

- *Passo 3* Calcule a pressão e temperatura pseudo-reduzidas: $p_r \in T_r$.
- *Passo 4* Obtenha a relação μ/μ_1 em função de p_r e T_r , utilizando os gráficos das *figuras A.9* e *A.10*.
- Passo 5 Determine a viscosidade do gás por meio de:

$$\mu = \left(\frac{\mu}{\mu_1}\right) \times (\mu_1)_{corr} \qquad eq.(A.51)$$

A.6.2 Determinação da viscosidade através do método de Lee, Gonzalez e Eakin

A viscosidade do gás pode ser obtida por meio de:

238

onde

$$K = \frac{(9,4+0,02M)T^{1,5}}{209+19M+T} \quad ; \quad X = 3,5 + \frac{986}{T} + 0,01M \; ;$$
$$Y = 2,4 - 0,2X$$

Nestas equações as unidades empregadas são: $T = {}^{o}R$, $\mu_g = cp$, M = peso molecular, $\rho_g = gr/cm^3$.

10.0 1.0 CLT Tr 3.0 2.8 2.6 0.1 24 2.2 2.0 TT 1.8 1.6 1.5 1.4 0.01 0.2 10.0 1.0 Pr

Figura A.7 Variação de CrTr com a pressão e temperatura reduzida. Extraída de Engineering Data Book – Gas Processors Suppliers Association, 1987. (1,4 < = Tr < = 3,0; 0,2 < = Pr < = 15,0)

Figura A.8 Viscosidade do gás natural a pressão de 1 atm. Extraída de Previsão de Comportamento de Reservatórios de Petróleo – Adalberto José Rosa, Renato de Souza Carvalho

Renato de Souza Carvalho

6.5 тт Π 6.0 П пш тпп 5.5 ттт Π 5.0 тпп 4.5 Razão de viscosidade, u/u1 THU $\pi\pi\pi$ 4.0 3.5 3.0 2.5 тпп 2.0 Ш 1.5 11 1.0 0.1 0.2 0.3 0.5 2.0 3.0 5.0 10 20 30 1.0 Pressão pseudoreduzida, Ppr

APÊNDICE B Pressão de Orvalho para Gás Natural

A pressão de orvalho é estimada com a utilização da correlação gerada por *Nemeth e Kennedy*²³ (1967) como uma função da composição e da temperatura⁶. Pode ser estimada pela seguinte correlação:

$$p_{d} = \exp \begin{cases} A \left[0,2*\%N_{2} + CO_{2} + \%H_{2}S + 0,4*\%Meth + \%Eth + 2(\%prop + \%IBut + \%N) - \%But + \%IPen + \%NPen + \%NHex \right] + B*DenC7 + C* \left[\%Meth / \%C_{7}^{+} + 0,2\right]) + D*T' + E*L + F*L^{2} + G*L^{3} + H*M + I*M^{2} + J*M^{3} + K \end{cases}$$

Onde:

А	=	$-2,0623054x10^{-2}$
В	=	6,6259728
С	=	$-4,4670559x10^{-3}$
D	=	$1,0448346x10^{-4}$
Е	=	$3,2673714x10^{-2}$
F	=	$-3,6453277x10^{-3}$
G	=	$7,4299951x10^{-5}$
Н	=	-0,11381195
Ι	=	$6,2476497x10^{-4}$
J	=	$-1,0716866x10^{-6}$
K	=	10,746622
L	=	$\left(C_{7}^{+}\right)\left(MWC_{7}^{+}\right)$
М	=	$MWC_7^+ / (DenC_7^+ + 0,0001)$
DenC	+ 7	$\binom{0,6882*\%NHep+0,7068*\%NOct+}{0,7217*\%NNon+0,7342*\%NDec} / \%C_7^+$
MWC	⁺ ₇ =	
$\begin{pmatrix} 100,2\\ 142,3 \end{pmatrix}$	*%NH *%ND	$ec + 114,2 * \% NOct + 128,3 * \% NNon + / \% C_7^+$
C_7^+	=	% <i>NHep</i> +% <i>NOct</i> +% <i>NNon</i> +% <i>NDec</i>
C_{7}^{+}	=	$%C_7^+/100$

APÊNDICE C Determinação da Função Pseudo Pressão

Como mencionado no capítulo 3, a equação da difusividade será resolvida em termos de pseudo pressão. É preciso desenvolver métodos de obtenção de m(p) em função da pressão.

C.1 Método de integração numérica

Observamos na equação 3.31 que a definição de pseudo pressão envolve a avaliação de uma integral com um limite inferior de p_o e um limite superior p, a pressão de interesse. Esta p_o é uma pressão base baixa arbitrária; o valor que está freqüentemente no limite de 0 a 200 psia depende das necessidades e desejos do analista.

A proximidade normal é para avaliar numericamente a integral da *equação* 3.33. Para o gás específico considerado, uma tabela é desenvolvida de μ e z versus p para pressões da pressão base à máxima pressão do sistema, que é normalmente a pressão inicial do reservatório. O incremento da pressão está normalmente no limite de 50 a 200 psi para cálculos manuais, ou no limite de 10 a 25 para cálculos com computador. Para pressões baixas, um pequeno incremento pode ser escolhido. Logo, para cada pressão, o valor $p/\mu z$ é calculado. Nesse ponto, a integral é avaliada em cada pressão, utilizando-se uma integração numérica como a regra de Simpson ou a regra Trapezoidal. Dessa maneira, um gráfico ou uma tabela de m(p) versus p é desenvolvido para um gás particular à temperatura do reservatório.

Para utilizar a regra trapezoidal, a integral da *equação 3.31* é representada como uma soma de integrais com cada uma das integrais estando acima de cada incremento na pressão.

$$2\int_{p_0}^{p} \frac{p}{\mu z} dp = \sum_{i=1}^{n} 2 \int_{\Delta p_i} \frac{p}{\mu z} dp$$
(C.1)

Onde tem "n" incrementos de pressão até a pressão "p", e $\int_{\Delta p_i}$ representa a

integral acima da pressão de incremento "i". Cada integral dentro da soma do lado direito da *equação C.1* é aproximada como:

$$2\int_{\Delta p_{i}} \frac{p}{\mu z} dp \approx 2 \left[\left(\frac{p}{\mu z} \right)_{i-1} + \left(\frac{p}{\mu z} \right)_{i} \right] [\Delta p] / 2 \qquad (C.2)$$

onde $(p/\mu z)_{i-1}$ e $(p/\mu z)_i$ representa os valores iniciais e finais de $(p/\mu z)$, respectivamente, do incremento de pressão "i". Δp é o incremento de pressão.

O valor do pseudo potencial real dos gases m(p) para pressões intermédias pode ser encontrado por interpolação ou através do *gráfico C.1*, valor encontrado para a pressão desejada. O inverso, para converter valores do pseudo potencial real dos gases para a pressão, é mais fácil pelo recurso gráfico de m(p) versus p.

C.2 Método da pseudo pressão reduzida

A pressão reduzida pode ser definida como:

$$m(p)_{r} = \int_{0}^{p_{r}} \frac{p_{r}}{(\mu/\mu_{1})Z} dp_{r}$$
(C.3)

onde $p_r = p/p_c$, sendo p_c é a pressão crítica do gás, e μ_1 é a viscosidade absoluta do gás à pressão atmosférica. A pressão de referência foi especificada como sendo nula $(p^* = 0)$.

Assim, utilizando a equação de definição de m(p), equação 3.31, e a equação C.3, podemos concluir que:

$$m(p)_r = \int_0^{p_r} \frac{p_r}{(\mu/\mu_1)Z} dp_r$$

$$m(p) = 2\int_{0}^{p} \frac{p}{\mu Z} dp$$

Portanto,

$$m(p) = \frac{2 p_c^2}{\mu_1} m(p)_r$$
 (C.4)

Empregando a equação de *Dranchuk et al.* para o cálculo do fator de compressibilidade e o método de *Carr et al.* para a determinação da viscosidade absoluta de gases naturais, a *tabela C.1* pôde ser construída por integração numérica da *equação C.3* para fornecer valores de $m(p)_r$ a diferentes pressões reduzidas p_r .

Figura C.1 Pseudo Pressão Real do Gás, como uma função da Pressão atual

TABELA C.1

Integral da Pseudo Pressão Reduzida m(p), como uma Função de $T_r \; P_r$

PRESSÃO PSEUDO- REDUZIDA	VALORES DE $m(p)_r = \int_{0}^{p_r} \frac{p_r}{(\mu/\mu_1)Z} dp_r$ PARA TEMPERATURA									
	pseudo-reduzida T_r de									
Pr	1.05	1.15	1.30	1.50	1.75	2.00	2.50	3.00		
0.10	0.0051	0.0051	0.0051	0.0050	0.0050	0.0050	0.0050	0.0050		
0.20	0.0208	0.0206	0.0204	0.0202	0.0201	0.0201	0.0200	0.0200		
0.30	0.0475	0.0467	0.0461	0.0456	0.0453	0.0452	0.0451	0.0450		
0.40	0.0856	0.0839	0.0824	0.0813	0.0807	0.0803	0.0801	0.0800		
0.50	0.1335	0.1322	0.1293	0.1272	0.1261	0.1254	0.1250	0.1249		
0.60	0.1980	0.1921	0.1869	0.1833	0.1814	0.1803	0.1798	0.1797		
0.70	0.2733	0.2637	0.2556	0.2498	0.2468	0.2452	0.2445	0.2443		
0.80	0.3620	0.3474	0.3355	0.3266	0.3222	0.3198	0.3189	0.3187		
0.90	0.4638	0.4437	0.4262	0.4134	0.4073	0.4039	0.4030	0.4029		
1.00	0.5780	0.5529	0.5276	0.5095	0.5019	0.4974	0.4968	0.4967		
1.10	0.7053	0.6746	0.6400	0.6154	0.6059	0.6003	0.6004	0.6003		
1.20	0.8523	0.8083	0.7638	0.7314	0.7192	0.7131	0.7136	0.7134		
1.30	1.0318	0.9539	0.8983	0.8574	0.8416	0.8356	0.8362	0.8360		
1.40	1.2392	1.1114	1.0431	0.9930	0.9732	0.9676	0.9681	0.9680		
1.50	1.4482	1.2807	1.1978	1.1381	1.1142	1.1091	1.1091	1.1095		
1.60	1.6468	1.4616	1.3620	1.2923	1.2645	1.2599	1.2592	1.2602		
1.70	1.8359	1.6516	1.5356	1.4557	1.4240	1.4199	1.4183	1.4203		
1.80	2.0176	1.8476	1.7182	1.6280	1.5923	1.5887	1.5862	1.5895		
1.90	2.1926	2.0472	1.9090	1.8089	1.7695	1.7663	1.7632	1.7679		
2.00	2.3619	2.2476	2.1068	1.9982	1.9553	1.9526	1.9492	1.9554		
2.10	2.5272	2.4499	2.3109	2.1954	2.1495	2.1472	2.1442	2.1319		
2.20	2.6899	2.6546	2.5206	2.3999	2.3519	2.3499	2.3479	2.3575		
2.30	2.8500	2.8603	2.7354	2.6116	2.5823	2.5805	2.5802	2.5721		
2.40	3.0074	3.0658	2.9549	2.8302	2.7806	2.7788	2.7811	2.7956		
2.50	3.1622	3.2701	3.1786	3.0554	3.0067	3.0048	3.0105	3.0280		
PRESSÃO				p_r	.					
----------	--------	----------	------------	---------------------------	-----------------	----------	---------	---------		
PSEUDO-	VALOF	RES DE	$m(p)_r =$	$=\int \frac{P}{1}$	$\frac{r}{r}dp$, PARA	TEMPER.	ATURA		
REDUZIDA				$_{0}^{\circ}$ (μ /)	$u_1)Z$					
			PSE	UDO-REI	DUZIDA	T_r de				
Pr	1.05	1.15	1.30	1.50	1.75	2.00	2.50	3.00		
2.60	3.3143	3.4726	3.4060	3.2872	3.2403	3.2383	3.2482	3.2691		
2.70	3.4638	3.6727	3.6367	3.5251	3.4813	3.4792	3.4942	3.5191		
2.80	3.6108	3.8701	3.8700	3.7690	3.7297	3.7272	3.7483	3.7776		
2.90	3.7553	4.0846	4.1056	4.0185	3.9851	3.9824	4.0106	4.0449		
3.00	3.8974	4.2560	4.3429	4.2735	4.2474	4.2444	4.2809	4.3206		
3.25	4.2456	6 4.7260	4.9417	4.9303	4.9299	4.9296	4.9903	5.0465		
3.50	4.5859	5.1857	5.5444	5.6102	5.6466	5.6563	5.7459	5.8235		
3.75	4.9183	5.6338	6.1461	6.3089	6.3944	6.4224	6.5462	6.6503		
4.00	5.2430	6.0700	6.7434	7.0228	7.1705	7.2259	7.3894	7.5257		
4.25	5.5622	6.4973	7.3356	7.7491	7.9723	8.0629	8.2745	8.4484		
4.50	5.8776	6.9181	7.9228	8.4853	8.7933	8.9296	8.2004	9.4168		
4.75	6.1892	7.3324	8.5032	9.2289	9.6339	9.8239	10.1654	10.4297		
5.00	6.4970	7.7399	9.0758	9.9772	10.4907	10.7437	11.1682	11.4859		
5.25	6.8011	8.1404	9.6400	10.7263	11.3616	11.6870	12.2073	12.5841		
5.50	7.1014	8.5345	10.1951	11.4803	12.2446	12.6520	13.2811	13.2232		
5.75	7.3980	8.9218	10.7409	12.2318	13.1379	13.6368	14.3883	14.9020		
6.00	7.6909	9.3025	11.2773	12.9815	14.0397	14.6399	15.5274	16.1193		
6.25	7.9809	9.6780	11.8066	13.7293	14.9488	15.6988	16.6956	17.3731		
6.50	8.2688	10.049	12.3311	14.4749	15.8643	16.6915	17.8901	18.6617		
6.75	8.5546	10.417	12.8504	15.2177	16.7846	17.7366	19.1096	19.9841		
7.00	8.8383	10.781	13.3644	15.9669	17.7087	18.7927	20.3527	21.3390		
7.25	9.1198	11.140	13.8730	16.6917	18.6356	19.8589	21.6184	22.7253		
7.50	9.3992	11.496	14.3760	17.4219	19.5644	20.9337	22.9053	24.1421		
7.75	9.6764	11.847	14.8735	18.1471	20.4942	22.0163	24.2124	25.5883		
8.00	9.9516	5 12.195	15.3655	5 18.8669	21.4242	23.1057	25.5386	27.0627		
8.25	10.225	5 12.540	15.8527	7 19.5824	22.3551	24.2007	26.8821	28.5650		
8.50	10.497	12.883	16.3358	20.2946	23.2874	25.3004	28.2415	30.0944		

PRESSÃO	$p_{l'}$ p
PSEUDO-	VALORES DE $m(p)_r = \int \frac{p_r}{(p_r)^2} dp_r$ PARA TEMPERATURA
REDUZIDA	$\frac{1}{0} (\mu/\mu_1)Z$
	PSEUDO-REDUZIDA T_r DE
Pr	
	1.05 1.15 1.50 1.50 1.75 2.00 2.50 5.00
8.75	10.768 13.2231 16.815 21.0033 24.2205 26.4040 29.6156 31.6903
9.00	11.037 13.5614 17.2901 21.7081 25.1539 27.5107 31.0037 33.2314
9.25	11.305 13.8976 17.7612 22.4090 26.0869 28.6200 32.4048 34.8371
9.50	11.572 14.2315 18.2283 23.1057 27.0192 29.7311 33.8182 36.4666
9.75	11.837 14.5632 18.6914 23.7981 27.9502 30.8437 35.2431 38.1191
10.00	12.101 14.8926 19.1505 24.4860 28.8797 31.9570 36.6786 39.7937
10.50	12.626 15.5473 20.0604 25.8522 30.7359 34.1873 39.5759 43.1956
11.00	13.148 16.1969 20.9615 27.2075 32.5885 36.4211 42.5019 46.6559
11.50	13.666 16.8412 21.8537 28.5508 34.4882 38.6554 45.4518 50.1691
12.00	14.182 17.4804 22.7367 29.8815 36.2740 40.8873 48.4215 53.7299
12.50	14.694 18.1145 23.6105 31.1992 38.1035 43.1147 51.4073 57.3337
13.00	15.203 18.7435 24.4750 32.5036 39.9223 45.3355 54.4059 60.9761
13.50	15.708 19.3673 25.3303 33.7943 41.7295 47.5481 57.4142 64.6533
14.00	16.210 19.9859 26.1763 35.0712 43.5240 49.7510 60.4295 68.3305
14.50	16.709 20.5993 27.0132 36.3344 45.3055 51.9431 63.4490 72.0941
15.00	17.204 21.2076 27.8409 37.5837 47.0731 54.1231 66.4718 75.8571

APÊNDICE D Interpretação Teste de Formação DST, Poço PUC – X1

D.1 Antecedentes

De 8 a 17 de abril de 2003, foi feito um teste de formação DST em linha de 5" no poço PUC – X1; os trechos provados foram de 4350 a 4355 mts. e de 4359 a 4368 mts do arenito Robore III.

Para registrar os dados de pressão, baixaram-se dois registradores eletrônicos, o superior colocado a uma profundidade de 4322.03 mts e o inferior a 4324,33 mts. O desenvolvimento do teste foi o seguinte:

Teste	Tempo
Fluxo 1	10 min
Estática 1	60 min
Fluxo 2	24 horas
Estática 2	48.5 horas
Fluxo 3	90.5 horas

D.2 Desenvolvimento do teste

O desenvolvimento e os resultados do teste foram os seguintes:

Fluxo 1 (10 min), reação imediata de forte intensidade, com choke 16/64", com evacuação de fluido de completação.

Estática 1, (60 min), Espaço anular estático.

Fluxo 2 (24 horas), reação imediata de forte intensidade, com evacuação de fluido de completação, choke 16/64". Aos 15 minutos do segundo fluxo, presença de gás na fossa, chama de cor amarelo-laranja. Durante as últimas 19 horas de fluxo, a quantificação da vazão deu os seguintes resultados:

Тетро	Ck	P. Surg	Condens	Gás	RGP	°API
Hrs	n/64"	Psi	BPD	MMpcd	PC/BBL	
19	16	4250	104	6,268	60269	59

Estática 2 (48,5 horas), espaço anular estático. Pressão acumulada em superfície 3300 psi.

Fluxo 3 (90,5 horas), durante o terceiro fluxo, efetuou-se a seguinte quantificação de vazões, com o fim de determinar o Potencial Absoluto de Fluxo no poço:

Tempo	СК	P.Surg.	Pet	Gás	RGP	°API	Água	Salin	Press.
Hrs	n/64"	PSI	BPD	MMPCD	PC/BBL		BPD	PPM Cl-	fundo
									PSI
12	12	5950	72	4,817	66903	58,6	6	700	7815
12	16	4380	88	6,296	71545	58,6	11	700	6009
12	20	3350	98	7,337	74867	58,2	17	700	4865
12	24	2460	109	8,080	74128	58,2	17	700	3978
38	16	4500	89	6,281	70573	59,5	10	700	6188

Os parâmetros do reservatório determinados mediante a interpretação foram:

Parâmetros		Unidades	Valor
Permeabilidade	k	md	1,234
Capacidade de Fluxo	kh	md-ft	76,5
Dano	S		17,8
Armazenagem	Cs	bbl/psi	2,92 e-4
Pressão Reservatório	Pr	psia	10477
Temp. Reservatório	Tr	٥F	270
Espessura do Reservatório	ht	pés	62
Porosidade	φ		0,07
Saturação água	Sw		0,45
Saturação gás	Sg		0,54
Compressibilidade	Ct	psi^-1	2,64 e-5

Os parâmetros do fluido

Parâmetros		Unidades	Valor
Densidade Gás	Dg		0,63
Densidade Condensado	API	°API	59
Relação Cond – Gás	RCG	STB/MMscf	16,6
Relação água – Gás	RWG	STB/MMscf	0,00
Salinidade água		Ppm	0,00

Os parâmetros de Separador são:

Pressão Separação: 1500 psia

Temperatura Separação: 85 °F

APÊNDICE E Análise Instrumental Cromatografia Gasosa

E.1 Introdução

A técnica mais comum para saber o que contém o gás natural é a da análise cromatográfica. Os cromatógrafos são equipamentos compostos de colunas construídas com aço inoxidável ou plástico, cheias de substâncias que atraem individualmente cada um dos componentes em função de sua composição. Assim, à medida que o gás avança dentro do tubo, cada componente adere à superfície da sustância utilizada como recheio e permanece retida por um determinado período. Isso permite que os diferentes componentes que integram a mostra gradualmente se separem. À saída do tubo existe um detetor encarregado de registrar o momento em que passou um componente puro.

O analista (pessoa encarregada de operar os equipamentos) encarrega-se de que o usuário do conhecimento receba o relatório de maneira apropriada. De sua interpretação posterior virá o bom uso dos projetos existentes ou a prevenção necessária para que as instalações sejam capazes de manejar os fluídos tal como o previu o projetista. Com as análises feitas no laboratório os diversos integrantes da amostra vão sendo identificados . Quando já se tem ensaiado o uso da ferramenta, o processo torna-se rotineiro e o analista identifica com segurança a composição de cada uma das amostras que chegam ao laboratório.

Portanto, é necessário que existam esses equipamentos nas plantas de processamento de gás natural. Os profissionais experientes trabalham com a segurança exigida quando as circunstâncias os obrigam. Assim, garante-se não somente a operabilidade eficiente da instalação, mas, além disso, o operador pode se antecipar com as correções necessárias antes que o problema seja evidente.

Quando as plantas de gasolina natural não dispunham dos cromatógrafos em linha, o operador dava-se conta da mudança da composição quando após doze horas e seria necessário outro meio dia para estabilizar a torre. De fato, a produção sairia das especificações. Agora, a cada vinte minutos, é possível ter a análise da composição que está chegando e, no caso da mudança do produto, produzir-se-iam as ações imediatas que fossem necessárias para corrigir os desvios.

E.2 Obtenção da composição molecular do gás para o poço PUC – X1

Para a obtenção da composição molecular do gás, inicialmente toma-se uma amostra em uma ponte de medição de transferência do carregador ao transportador; tal amostra é transportada até o laboratório para sua respectiva análise. *Ver figura E.1*

Figura E.1 Cilindro para obter amostra de gás

Para realizar a análise, deve-se contar com um gerador de hidrogênio e também com um cromatógrafo.

O cromatógrafo utilizado nesta análise foi um VARIAN 3300/3400, as *figuras E.2* e *E.3* mostram em detalhes todas as partes do aparelho.

O seguinte procedimento foi feito no laboratório para obter a fração molar do gás para o poço PUC – X1:

 Acesso do gerador de hidrogênio (gas carrier), utilizado como gás de transporte. Quando o gás alcança uma pressão de 65 psi mediante uma conexão de tubing até o cromatógrafo, *figura E.4*, a pressão é regulada por válvulas reguladoras de pressão a 40 psi, para proceder ao acesso do cromatógrafo.

Figura E.4 Gerador de Hidrogênio

- Uma vez alcançada a pressão, procede-se à calibragem e então espera-se um tempo aproximado de 10 a 14 horas para que o equipamento estabilize e possa proceder à realização das análises correspondentes.
- Deve-se ter muito cuidado para que não falte água destilada desionizada no gerador de hidrogênio e a Sílica Gel esteja seca e de cor azulada.
- 4. Conecta-se o cilindro à amostra de gás numa válvula reguladora (regula a 20 psi), *figura E.5*, deixando sair o gás do cilindro para tirar todo o ar possível que tenha restado no momento em que a conexão foi feita com cilindro (aproximado 1 min); proceder à injeção até os detetores.

Figura E.5 Conexão do cilindro com amostra

- 5. Uma vez obtida a amostra representativa, procede-se ao início do processo de análise, pressionando "start".
- 6. O processo tem duração de aproximadamente 22 min para fornecer um resultado final, medido em % molar. *Figura E.6*

Figura E.6 Obtenção de Resultados.

Os valores obtidos são os seguintes:

Composiçã	ão do Gás Natural, Poço	PUC – X1
Componente	Formula	Fração Molar
Metano	CH ₄	90,74
Etano	C_2H_6	3,77
Propano	$C_{3}H_{8}$	1,15
Iso-Butano	iC_4H_{10}	0,19
Butano Normal	$nC_{4}H_{10}$	0,27
Iso-Pentano	$iC_{5}H_{12}$	0,12
Pentano Normal	$nC_{5}H_{12}$	0,09
Hexano	$C_{6}H_{14}$	0,18
Heptano +	$C_7 H_{16}^+$	0,1
Nitrogênio	N_2	0,01
Dióxido de Carbono	CO_2	3,38
Gás Sulfídrico	H_2S	0,0

TABELA E.2 omposição do Gás Natural, Poco PUC – X1

Fonte: Elaboração Própria

APÊNDICE F Sistema De Automatização Do Sistema Global De Um Poço Gás

O Microsoft Excel é uma ferramenta poderosa para analisar e apresentar informações. Um dos pontos fortes do Excel sempre foi sua linguagem de macro. Desde que o Excel apareceu pela primeira vez, sempre teve a linguagem de macro mais abrangente e flexível do que qualquer outro programa de planilha eletrônica.

Quando se começa a escrever macros no Excel, é preciso aprender duas habilidades diferentes. A primeira é aprender a trabalhar com o *Visual Basic for Applications (VBA)*. A segunda é aprender a controlar o Excel. Quanto mais se conhecer sobre o Excel como aplicativo de planilha eletrônica, mais eficaz será o desenvolvimento de macros que controlam o Excel.

Para a implementação deste projeto, utilizou-se a ferramenta *Excel XP* (2002). Ao executar esta aplicação desde o entorno gráfico da planilha eletrônica de Excel, projeta-se a interface principal com opções iterativas, tais como (reservatório, coluna de produção, choke, coluna horizontal) *Figura F.1*.

. Figura F.1 Formulário Principal

Figura F1 Formulário Principal

A aplicação concentra-se em duas fases: primeiro, a entrada de dados no sistema, ingressando as opções antes mencionadas; segundo, a execução dos métodos de cálculo para a otimização do sistema do poço em estudo.

O ingresso de dados do reservatório realiza-se de maneira automática através do formulário "Dados do Reservatório", *figura F.2*, que interatuam diretamente com a planilha eletrônica principal; se existem dados já definidos anteriormente, deve-se cancelar a inserção ou simplesmente não executar a interface mencionada.

Da mesma maneira, procede-se às seguintes interfaces visuais, ingressando os dados externos ao sistema e devem-se executar todos os formulários de dados antes de continuar o processo de cálculo para um correto funcionamento. O acesso a esses formulários realiza-se de forma independente ou aleatória, de acordo com o critério do usuário. *Formulários F.3 , F.4 , F.5 e F.6*

Dados do Reservatório					X
Pressão do Reservatório	10447	Psia	Razão Gás - Condensado	71603	PC/Bbls
Temperatura do Reservatório	730	٩R	Razão Gás - Água	0	PC/Bbls
Densidade do Gás	0,63		Viscosidade do Líquido	0,57	ср
Área do Reservatório	640	Acre	Gravidade do Condensado	59	°API
Espessura do Reservatório	62	Pé	Permeabilidade do Reservatório	1,234	md
Raio do Poço	0,54	Polg	Raio Externo de Drenagem	2980	Pé
Saturaração da água	0,41		Fator de dano	17,8	
Porosidade	0,07				
Profundidade	14331,41	Pé			
Compressibilidade	3,52e-5	Psi^-1			
		Voltar	Aceitar		

Figura F.2 Formulário Dados do Reservatório

Figura F.3 Formulário Dados do Tubo de Produção

Figura F.4 Formulário Dados da Linha de Surgência

Dados d	e Choke	_		×
Relaçã	o de Calores Esp	ecíficos	1,25	
Diâmetro de Choke			24	Ck/64"
Coefici	Coeficiente de Descarga			
				1
	Voltar		Aceitar	
Ì				

Figura F.5 Formulário Dados do Choke

Sep	arador			×
Pr	essão de Separa	sção :	1500	
	Voltar		Aceitar	

Figura F.6 Formulário Dados Pressão de Separação

Após definir os dados iniciais, procede-se à segunda fase, ingressando na opção "continuar" do formulário principal; essa opção refletirá a interface que se encarrega de inserir os valores correspondentes aos componentes do gás. *Figura F*.7

Figura F.7 Formulário Dados Componentes de Gás

O seguinte formulário apresenta as duas alternativas para determinar o *Potencial Máximo Do Poço (AOF)*; cada uma dessas alternativas contêm métodos correspondentes de cálculo. *Figura F.8*

Figura F.8 Formulário de Alternativa de escolha

O acesso à região "*Dados de Teste*" visualiza o formulário que descreve os 3 tipos de teste; o ingresso em qualquer dessas opções maneja o mesmo objeto gráfico para o ingresso de dados, que possui algumas modificações de entorno que identificam cada tipo de teste. *Figura F.9*

Teste	do Poço		×
	— Seleccio	ne:	
		Seqüencial	
		🔿 Isócrono	
		🔿 Isócrono Modifica	do
		1	
	Voltar	Aceitar	Passar

Figura F.9 Formulário Tipo de Teste Poço

Da mesma forma que no formulário de dados de teste, todas as demais interfaces contêm quadros de textos de entrada de dados que unicamente permitem continuar com a execução do programa. *Figura F.10*

	Choke	Duração	Pressão .Fundo Poço	Pressão de Fecham.	Pressão Surgência	Vazão de Gás	Vazão de Condensado	Vazão de Água
Período de Fluxo	Ck/64	Hrs	psia	psia	psia	MMscf/d	BPD	BPD
Estática Inicial	8	38	10477	10477	0	0	0	0
Fluxo 1	12	12	7815	10463	5950	4,817	72	6
Fluxo 2	16	12	6009	10463	4380	6,296	88	11
Fluxo 3	20	12	4865	10463	3350	7,337	98	17
Fluxo 4	24	12	6188	10463	2460	8,080	109	17

Figura F.10 Formulário Dados Teste de Fluxo pós Fluxo

Caso contrário, o sistema emitirá uma mensagem de erro "Inserir Dados", para o qual deve-se inserir o registro dos valores de entrada. *Figura F.11*

Informação	×
Verifição de vazão de fluxo e erosão	
Aceitar	

Figura F.11 Formulário Quadro de Dialogo Verificação de Vazão de fluxo e Vazão de erosão

A continuação desse processo de determinar a vazão de fluxo mínima para o levantamento de líquido contínuo e a vazão de erosão que se mostra antecipadamente por meio do quadro de diálogo anterior *(figura F.10)*, para então prosseguir com a planilha eletrônica correspondente e realizar o cálculo, *Figura F.12*

Figura F.12 Planilha Eletrônica de Cálculo da Vazão de Fluxo Mínimo e Vazão de Erosão

Seguindo a sequência do sistema, analisa-se a pressão de orvalho, da mesma maneira que na planilha eletrónica anterior, utilizando um quadro de diálogo para sua apresentação, *figura F.13*, para então prosseguir com a planilha eletrônica correspondente, *figura F.14*.

Figura F.13 Formulário Quadro de Diálogo Pressão de Orvalho

🔀 Microsoft Excel - Análise Nodal beta1	×									
🚇 Archivo Edición Ver Insertar Formato Herramientas Datos Ventana ?	Escriba una pregunta 🔹 🗕 🗗 🗙									
🗅 😅 🖬 🔒 🔩 🎒 🕼 🖤 🗼 🛍 🛍 • 🚿 🗠 • 🖓 - 🖓 - 🚷 Σ • 🔀 🛃 🗛 🛍 🚜	70% 🔹 🕵 🖕									
Arial • 10 • N X S 言言言 网 99 € % ∞ *& - 99 ∉ 標 •	🕭 • 🗛 • 🚬 💊 🎘 🎘 🔛 👌									
	K L M –									
PRESSÃO DE ORVALHO PARA GÁS NATURA	AL.									
Nemeth & Kennedy										
$\frac{4}{5} \left\{ A \left[0,2 *\%N_2 + CO_2 + \%H_2 S + 0,4 *\%Meth + \%Eth + 2(\%prop + \%IBut + \%N) \right\} \right\}$										
$\frac{3}{6} p_{A} = \exp\left[-\%But + \%IPen + \%NPen + \%NHex \right] + B * DenC7 + C * \left[\%Meth/\%C_{7}^{+} + 0.2\right] + \right]$										
$\begin{bmatrix} 2^{r+1} + 2^{r+2} + 2^{r+1} + 2^{r+1} + 3^{r+1} + 2^{r+1} + 2^$	·									
$\frac{11}{12} L = (C \frac{7}{2}) (MWC \frac{7}{2}) D_{DM}C^{+} (0.6882^{*}/MHep+0.7068^{*}/MOch) /_{0/2}$	**									
$\frac{13}{14}$ $(0,7217*\%NNon+0,7342*\%NDec)/^{70}$	·7									
$\frac{14}{15} \qquad M^2 = M^2 WC - j + 0,0001 $										
16 ort wat free										
$\frac{17}{18} \qquad (100.2*\% MHz_{2} + 114.2*\% MOz_{2} + 128.3*\%$	NNm+)/									
$MWC_7^+ = \begin{bmatrix} 0.05 \\ 142 \\ 3^* & MDec \end{bmatrix}$	/%C f									
$\frac{20}{21}$ % $C_{7}^{+} = \% NHep + \% NOct + \% NHon + \% NDec$	//									
22										
23 24 A .2065.02 H .0112912 VC7. 0.10										
25 B 6,6259728 I 6,25E-04 C7+ 0,001 Gerar Dados										
26 C -4,47E-03 J -1,07E-06 Den C7+ 0,6882										
27 D 1,04E-04 K 10,746622 MW C7+ 100,2 Continuar										
29 F -3,65E-03 M 145,57606										
30 G 7,43E-05 Voltar										
I → ► ► ► Vazão min , vel. e vazão erosão Pressão de Orvalho / Simplificado / Pri +										
Dibujo + 😓 🛛 Autoformas + 🔨 🔌 🗔 🔿 🏭 🎝 🖓 🖌 🏄 - 📥 = 🚍 🚍 🎒	-									
Listo										

Figura F.14 Planilha Eletrônica de Cálculo da Pressão de Orvalho

No seguinte objeto visual, pode-se observar todas as opções de seleção que fazem referência aos métodos de cálculo do *AOF*, *figura F.15*; com a seleção de cada método, o formulário transfere dados para a planilha eletrônica correspondente ao método indicado para sua posterior execução, *figura F.16*, pressionando o botão "gerar dados".

Figura F.15 Formulário Determinação do IPR e AOF

O processo de cálculo encontra-se implementado no editor de código de cada planilha eletrônica. Após a obtenção dos dados resultantes, prosseguir a execução, clicando no botão "continuar".

🔀 Microsoft E	xcel - Anál	ise Nodal Pl	JC - X1.xls											_ 8	×
Archivo	Edición Ve	er Insertar	Formato	Herramientas	; Datos	Ventana	?			Escrib	a una preg	unta	-	_ 8	×
						<u> </u>	- A		40- 🗔	1750					
	5 12 6	8 LQ. 🗸	7 HE HE	• 🄊 🖏	* [3] * ·	۰ ک	€ Z	↓ Ā↓] %	💷 🐠	/5%	• 🔍 •				
Arial	•	10 - N	<u>К S</u>		i 🔊 🗧	2 % 00		8 🗊 1	E 🔛 🗸	🕭 - 🛓	.	• 👌	*	<u>k</u>	» •
G24	-	f _x						1							
		ANÁLI	SE DO I	RESERV	ATÓR	0									-
		_	Metodo	Simplificado											
Periodo de flu	ixo Choqi CK/6/	ue Duraç 1.'' br	äo Press.Fu r	ndo Poço – Pre Icia	ss. Fecham.	Vazão MMsofid	Vazão Msofid	Dp°2 MModia°2	GerarD	ados					
Estática Inici	al 16	48,5	10	1477	10477	1414 Bonna	14150114	terreliption of the							
Fluxo 1	12	12	7	815	10463	4,817	4817	48,400	Cartin						
Fluxo 2	16	12	6	009	10463	6,296	6296	73,366	Contin	uar					
Fluxo 3 Eluxo 4	20	12	9	860 978	10463	7,337 8,080	7337 8080	85,805 93,650							
1 1010 1			Ĭ		10100	0,000	0000	00,000							
n –	log <i>q</i> 1	-logq4			~	9g									
$\frac{n-1}{\log n^2}$	$(-n^2)$	-log n ² -	²		$C = \frac{1}{2}$	2	n								
108 4 3	R ^{-P} wf1 J	-10 q F R -	^e wf4)		∇F	$k = p_{wf}$									
			_												
															
	0,78	•													
	C 0,004	6													
AC)F 9150,7	23 Mscfd													
•														F	È
Dibujo 🕶 🔈	Autoformas	• \ \		4 3 1	R &	/ -	A - ≡								
		, ,		The second			_		••••••• •	•					
LISCO															

Figura F.16 Planilha Eletrônica de Cálculo do AOF (Método Simplificado)

Uma vez executados os distintos métodos de cálculo do AOF para maior efeito de comparação, pressiona-se o botão "Resumo", cuja função é relacionar os dados de enlace direto de cada método anteriormente aplicado a uma planilha eletrônica devidamente estruturada, *figura F.17*

🔀 Microsoft Excel	- Análise Nodal PL	IC - X1.xls					×
Archivo Edici	ón <u>V</u> er <u>I</u> nsertar	<u>F</u> ormato <u>H</u>	erramientas Da <u>t</u> os	; Ve <u>n</u> tana	2	Escriba una preg	junta 🔹 🗕 🗗 🗙
0 🛩 🖬 🔒 🧌	8 🖨 🖪 🖤	አ 🖻 🛍 🗸	🛷 10 + Cl +	🔮 Σ 📲	Ē 2↓ <u>X</u> ↓ <i>f</i> ∞ ∭.	🚜 75% 🔹 🛛 🗸	
Arial	• 10 • N	κs ≡		€ % 000		• A -	• 🏞 🛠 🕺 👋
E26 💌	fr 3183	2230114736					• • • • • •
120	,	2200111100					
RESUMO	DE VALORES DE "	AOF" - POÇO	PUC - X1				-
Tipo de Análise	Consta	ntes	AOF (Mscfd)	Continuar			
Simplificado	n	0,7836	9151				
	C	0,0046					
Pressão ao Quadrado	A	8093,00	8905				
	в	0,4755					
Pseudo Pressao	A	88,50	9402				
Pressão	۵ ۵	0.1937	10297				
1 165540	B	8.00E-05	10201				
	INFLOW PE	RFORMANCE	CURVE - POÇO PL	JC - X1			
Método Sir	nplificado	Método Pres:	são ao Quadrado	Método Pse	udo Pressão	Método Pr	essão
Vazão(Assum)	Pressão fundo poço	Vazão(Assum)	Pressão fundo poço	Vazão(Assum	n) Pressão fundo poço	Vazão(Assum)	Pressão fundo poço
Qsc (Mscfd)	psia	Qsc (Msofd)	psia	Qsc (Mscfd)	psia	Qsc (Mscfd)	psia
	10477		10477		10477		10477
915,07	10196	890,46	10109	940,25	10212	1029,71	10193
1830,14	9782	1780,91	9687	1880,49	9816	2059,42	9739
2745,22	9282	2671,37	9206	2820,74	9290	3089,13	9115
3660,29	8699	3561,82	8655	3760,98	8634	4118,85	8322
4575,36	8028	4452,28	8019	4701,23	7849	5148,56	7359
5430,43 6406.61	7251	5342,73	1211	5641,48	6933 E070	61/8,27	6227
7220 59	5000 5015	7122.65	5290	752197	4001	7207,30	9329
9235.65	3716	2014 10	3791	9462.22	2192	9267.40	1911
9150 72	0110	8904 56	0101	9402,22	0100	10297 12	1011
							-
Dibujo 🔻 🕞 🛛 Auto	formas 🔻 🔪 🔌 [4	🛟 🖪 🖾 ඵ	• - 🚄 - 🗛	. • = ≡ ≓ ∎	┛・	
Listo							

Figura F.17 Planilha Eletrônica Resumo de Valores de AOF, (Dados do Teste)

De forma similar, realiza-se o processo de cálculo dos métodos que intervêm na entrada de dados do Reservatório, projetando uma interface conformada pelos mesmos métodos anteriores. A seleção de um método, *figura F.18*, e a aceitação do mesmo permite orientar a transferência dos parâmetros principais para a estrutura de dados organizada da planilha eletrônica à qual faz referência, *figura F.19*. Esses dados são capturados desde a planilha principal que guarda os valores iniciais.

Figura F.18 Formulário Determinação AOF e IPR com Dados Reservatório

🔀 Microsoft Excel - Análise Nodal PUC - X1.xls										
🕙 Archivo Edición Yer Insertar Eormato Herramientas Datos Ventana ? Escriba una pregunta 🔹 🗗 🗙										
□ 😅 🖬 🔒 🔩 🎒 🖪 🐧 🖤 🐰 ங 🛍 + 🚿 Ν + Ο + 🤮 Σ + 🖓 Ϩ↓ Ζ↓ 🚈 🕌 🛷 75% 🛛 + 🕄 🗸										
Arial v 10 v N X S ≡ ≡ ≡ ⊠ 🖗 € % 000 *88 +89 ∉ ∉ • Ø • ▲ • . • Ø • ▲ • . • Ø • ▲ • .										
✓ f≈ 1047,7										
ANÁLISE DO RESERVATÓRIO Dados do Reservatório										
MÉTODO SIMPLIFICADO										
$q_{sc} = \frac{703 \times 10^{-6} kh \left(p_{R-}^2 p_{wf}^2 \right)}{T \mu Z} \left[\ln \left(r_e / r_w \right) - 0.75 + S \right]$										
Pressão Assumida Pr'2-Pw'12 vazão psia psi'2 Misold										
W177 9429 20855831 1254 8382 39516310 2503 Gerar Dados 7334 55891440 3726 6286 70251219 4901 5239 82325647 5995 4141 e2204724 6372										
I Dibujo ▼										

Figura F.19 Planilha Eletrônica de Cálculo do AOF, (Método Simplificado)

Sob o mesmo critério, procede-se para gerar os valores resultantes do método a aplicar. Da mesma forma que o anterior, fazer um resumo dos métodos *figura F.20*

🔀 Microsoft Excel - Anális	se Nodal PUC - X1.xls					_ & ×
🖹 Archivo Edición Ve	r <u>I</u> nsertar <u>F</u> ormato <u>H</u> erra	mientas Da <u>t</u> os Ve	ntana <u>?</u>		Escriba una pregunta	• _ & ×
🗅 🛩 🖪 🔒 🔁 🚑) 🖪 🖤 X 🖻 🖻 - 🚿	- KD + CH + 🤮	$\Sigma = \begin{bmatrix} c \\ c$	l 🖅 🛍 😱	75% 🔹 🕐 🖕	
Arial			× non +0.00		A - I -	🗩 🔅 📝 🚿
=			• • • • • • • • • • • • • • • • • • •			•••••••••••••••••••••••••••••••••••••••
•	<i>)x</i>					
RESUMO DE V	ALORES DE "AOF" - POÇO P	UC - X1				_
Tipo de Análise		AOF (Mscfd)				
Pressao ao Quadrado		8,83				
Simplificado		8,93			_	
Pseudo Pressão		10,12				
CURVA DO COMPO	RTAMENTO DO FLUXO DE E	NTRADA <i>(IPR</i>) - PC	ÇO PUC - X1			
Método Pres	são ao Quadrado	Método S	Simplificado	Método F	seudo Pressão	
Vaza Mso	ao Pressao Fundo Poço .fd Pwf (nsia)	Vazao Msefd	Pressao Fundo Poço Pwf (nsia)	Vazao Msofd	Pressao Hundo Poço Pwf (nsia)	
	10477		10477		10477	
1,2	5 9429	1,25	9429	1,25	9429	
2,4	9 8382	2,50	8382	2,50	8382	
3,7	7 6286	3,73	6286	3,70	6286	
5.9	5 5239	5,99	5239	6.21	5239	
6,9	1 4191	6,97	4191	7,38	4191	Cor
7,7	1 3143	7,79	3143	8,45	3143	
8,3	2 2095	8,41	2095	9,33	2095	
8,7	0 1048	8,80	1048	9,91	1048	
8,8	3	8,93		10,12		
	INFLOW PERFU	JRMANACE C	URVE			-
•						
Dibujo 🕶 😓 🛛 Autoformas	• 🔪 🔍 🗆 🔿 🚰 4 🤅	3 🖸 📰 🖄 - 🚽	🖉 • 🛕 • 🚍 📼	≣≓∎ 🗊 .		
Listo						

Figura F.20 Planilha Eletrônica Resumo de Valores de AOF, (Dados do Reservatório)

Ambas alternativas de cálculo, tanto de teste como de reservatório, compartilham um mesmo formulário de cálculo, (Queda de Pressão na Tubulação Vertical), figura F.21, uma vez selecionado o método para sua execução situado no formulário de "Determinação de AOF e IPR".

Queda de Pressão na tubulação vertical, Pwh1									
🌀 Método Pressão e Temp. Media									
C Método Cullender & Smith									
C Nodo solução Cabeça Poço >>									
Voltar Aceitar Passar Resumo									

Figura F.21 Formulário Queda de Pressão na Tubulação Vertical

Essas duas opções executadas interagem cada uma com sua respectiva planilha eletrônica, *figura F.22*

Figura F.22 Planilha Eletrônica, Queda de Pressão no Tubo Vertical (temperatura e compressibilidade média)

Para obter uma comparação dos dois métodos apresentados com seu respectivo gráfico, *figura F.23*, deve-se pressionar "Resumo" no formulário da *figura F.21*.

Figura F.23 Planilha Eletrônica Ressumo de Pressão na Cabeça do Poço.

Posteriormente, selecionar no formulário da *figura F.21* a opção de segundo plano "*nó solução cabeça do poço*", ingressando diretamente no sistema de cálculo da *tubulação de surgência (horizontal)*, que reflete em uma interface os métodos que determinam a queda de pressão na horizontal, *figura F.24*. Assim como todos os métodos anteriores, estes estão também inter-relacionados com planilhas eletrônicas a partir do mesmo editor de código de cada formulário.

Figura F.24 Formulário Queda de Pressão na Linha de Surgência

Cada um dos métodos executados envia automaticamente seus resultados à planilha eletrônica dedicada à comparação dos métodos, *figura F.25*.

🔀 Microsoft I	Excel - Análiso	e Nodal PU	C - X1.xls							_ 8	X	
Archivo	<u>E</u> dición <u>V</u> er	Insertar	<u>F</u> ormato	<u>H</u> erramientas	Da <u>t</u> os Ve <u>n</u> tana	2		Escriba una pregun	ta 🔻	- 8	×	
🗅 😅 📑	8 🖻 🖨	🗟 🥙	X 🖻 💼	* 🔊 🗠 *	CH + 🤮 Σ +		f= 🛍 😽	75% 🔹 🕄 🖕				
Arial	+ 10	- N	κs 🔳			+ 0 00 f		ð - A	1.00	M	»	
-	•	fx							1		•	
	_	,					Barra de fórm	ulas			-	
	ANÁLISE DA LINHA DE SURGÊNCIA											
				MÉTOI	DO TEMP. E CO	MP. MÉDIA						
$p_1^2 - p$	$\frac{2}{2} = \frac{25\gamma_g q}{a}$	² T Z f L ! ⁵	ou	$q = \frac{CT_b}{p_b}$	$\left[\frac{p_1^2 - p_2^2}{\gamma_g f \overline{T} \overline{Z} L}\right]^{0.5} d$	2.5						
λ	$V_{\rm Re} = \frac{20q\gamma_g}{\mud}$			$\frac{1}{\sqrt{f}} = 1.14 - $	$2\log\left(\frac{e}{d} + \frac{21.25}{N_{\rm Re}^{0.9}}\right)$.)						
Iterações	2											
Vazão	Valor da Const.	No	Fator	Pressão do Ch	hoke							
Use (IVIIVIsera)	5.634E-3	Heynolas	Atrito	psia 1500								
0,94	5,634E-3	418216	0,01658	1501		Gerar Dados						
1,88	5,634E-3	836050	0,01588	1504	<u> </u>							
2,82	5,634E-3	1253141	0,01561	1509								
3,76	5,634E-3	1669133	0,01546	1515		Continuar						
4,70	5.634E-3	2003677 2496436	0,01537	1523							-	
•	0,0042-0	2100400	0,01001								Ē	
Di <u>b</u> ujo 🕶 🔓	Autoformas 🕶			4 🗘 🖪 🛛	🛛 🖉 + 🦽 + 🖉	↓ - = =	II 🗖 🖉 .	-				
Listo								MAY				

Figura F.25 Planilha Eletrônica Queda de Pressão na Linha de Surgência

Comparam-se todos os métodos apresentados e executados no formulário da *figura F.24*, clicando em "Resumo" na mesma figura, resultando em uma planilha eletrônica de comparação dos métodos, *figura F.26*

🔀 Micros	soft Excel - Ana	álise Nodal PUC	- X1.xls						_ 8	×
🖹 Arch	hivo <u>E</u> dición	<u>V</u> er <u>I</u> nsertar	Eormato <u>H</u> erra	mientas Da	<u>t</u> os Ve <u>n</u> tana	2	Escriba	a una pregunta	• - B	×
🗅 🖻	🖬 🔒 🖏 🛛	🖨 🖪 🖤 3	% 🖻 🛍 • 🝼	ю + ся	- 🤹 Σ - ξ		f* 🛍 极 75%	• 🛛 🗸		
Arial	-	10 • N .	<u>₭</u> <u>\$</u> <u>ह</u> <u>ह</u>	1	€% 000	•08 •08 🞼	🖅 🖂 • 🕭 • 🗛	🖣 🗸 🖡 🖕 者	* 🔛	» •
K2	2 -	fx								
	WELL	PIPING PERFO	RMANCE - POÇO	PUC X - 1						
W	/eymouth	Panh	andle A	Panh	andle B	Pressão e 1	Femperatura Média			
Vazão	👘 Pressão Choke	Vazão	Pressão Choke	Vazão	Pressão Choke	Vazão	Pressão Choke			
MMsofd	Psia	MMsefd	Psia	MMsofd	Psia	MMsofd	Psia			
	1500		1500		1500		1500			
0,94	1502	0,94	1501	0,94	1501	0,94	1501	Continuar		
1,00	1507	1,00	1503	1,00	1502	1,00	1509			
3.76	1529	3.76	1511	3.76	1509	3.76	1515			
4 70	1545	4 70	1517	4 70	1515	4 70	1523			
5.64	1564	5.64	1524	5.64	1521	5.64	1533			
6,58	1587	6,58	1532	6,58	1528	6,58	1545			
7,52	1612	7,52	1540	7,52	1537	7,52	1558			
8,46	1640	8,46	1550	8,46	1546	8,46	1573			
9,40	1671	9,40	1560	9,40	1556	9,40	1589			
sia) 1 1 1	680 660	Curva do C	Comportamen	to da Linf	na de Surgêr	ncia		<u> </u>		
• • • •									Þ	Ē
Di <u>b</u> ujo 🔻	Autoforma	as ▼ ∖ `` \		2 🔝	🖉 • 🚄 • 🗛	• = = :	≓╹╝₊			
Listo										

Figura F.26 Planilha Eletrônica Resumo de Pressão na Cabeça do Poço (Linha de Surgência)

Após deduzir os distintos valores resultantes, confirma-se no botão *"Seguinte"* no formulário da *figura F.24*, que permitirá a ativação da planilha eletrônica dedicada ao cálculo de sensibilidade aos diâmetros do tubo vertical e a linha de surgência, *figura F.27*.

Depois de definir os valores dos diferentes diâmetros de tubulação vertical e horizontal, na *figura F.27*, executa-se o botão "*Gerar Gráfica*", que se reflete graficamente a projeção das curvas anteriormente sensibilizadas, para então introduzir os valores ótimos dos diâmetros, que são obtidos pelo usuário desde a representação gráfica dos dados, *figura F.28*

🔀 Microsoft Excel - Aná	ilise Nodal PUC - X1.xls			_ 8 ×					
📓 Archivo Edición y	<u>V</u> er <u>I</u> nsertar <u>F</u> ormato <u>H</u> erram	ientas Da <u>t</u> os Ve <u>n</u> tana <u>?</u>	Escriba	una pregunta 🛛 👻 🗕 🗗 🗙					
🗅 🛩 🖬 🔒 🖏	5 d. 🖤 🕺 🖻 🛍 • 🝼	κ) • Ci + 🤮 Σ • 🙀 💈	🕴 👬 🏂 🌆 🌆 75%	• 2 .					
Arial 🗸	10 • N K S 📰 🚍	≣ 🛃 😨 € % ∞ 號 .	,% 🔃 🗊 • 🙆 • 🛕	🔹 🕭 🔹 义					
127 🗸	fx								
SENSIBILIDADE ÀS TUBULAÇÕES									
Método Cullender & Smith	🕘 тиво 🗤	/ERTICAL							
Diametro: 1,995 Vazão Pressão cab Qsc (MMsofd) (pia) 0,94 8306 1,88 7926 2,82 7417 3,76 6784 4,70 6027 5,64 5147 7,52 2999 8,46 1510 3,40	Diametro: 2,445 Pressão cabeça Vazão Pressão cabeça Qeso (MMscfd) (psia) 1,88 7937 2,82 7444 3,76 6632 4,70 6106 5,64 5267 6,58 4321 7,52 3266 8,46 2045	Diametro: 3 ₽ Vazão Pressão cabeça Qsc (MMsold) (pia) 8557 0,94 8300 1,88 7941 2,82 7453 3,76 6849 4,70 6133 5,64 5308 6,58 4382 7,52 3356 8,46 2201 3,40	Diametro: 3.5 ₽ Vazão Pressão cabeça Qac (MIMsofd) a (pisa) 0,34 8557 0,94 8310 1,88 7942 2,82 7456 3,76 6854 4,70 6141 5,64 5320 6,58 4400 7,52 3382 8,46 2244 9,40	Oerar Gráfica Voltar					
Método Temp. e Comp. Mé		ORIZONTAL							
Diametro: 1,995 Vazão Pressão do Ci Qso (MMsofd) psia 1500	Diametro: 2,445 🖻 hoke Vazão Pressão do Chok. Qso (MMsofd) psia 1500	Diametro: 3 Provide Vazão Pressão do Choke Qso (MMsofd) psia 1500	Diametro: 3,5 Vazão Pressão do Choke Qso (MMsofd) psia 1500						
Dibujo 🛪 🕞 Autoforma	·· \ \ □ O @ 4 0	0 📰 💩 + 🧳 + A + E							
Listo			_ ···· ↔ ···· ↓ ···· ↓ ····						

Figura F.27 Planilha Eletrônica, Sensibilidade ao Diâmetro, Tubo Vertical e Linha de Surgência

Figura F.28 Planilha Eletrônica, Representação Gráfica dos Diâmetros Sensibilizados

Definidos os valores de diâmetros no passo anterior, calcula-se a pressão *downstream* do *choke* que realiza o cálculo em uma planilha eletrônica que faz parte do sistema, *figura F.29*

🔀 Microso	oft Excel - Aná	lise Nodal PUC - X	1.xls						_ 8	×
📳 <u>A</u> rchiv	∕o <u>E</u> dición <u>V</u>	<u>(</u> er <u>I</u> nsertar <u>F</u> oi	mato <u>H</u> erramienta	as Da <u>t</u> os V	e <u>n</u> tana <u>?</u>		Escriba una p	regunta ·	- 8	×
		3 🖪 🕸 🖉 🐰 🛙	a n . «In	- 01 - L 🙆		£. 60 👧	75% 🔹 💈			
							·····	· •		
Arial		10 - N K		혐 \$?€	% 000 *00 →00 €	- 17 🔟 🗸 ,	🖄 • 🚣 • •	• 🛅 🛠		
	-	fx								
	A	NÁLISE DO	CHOKE							Π
	FLOXO DE	GAS ATRAVE	DE RESTRIÇO	JES						
< 2/k	/ (k+1)/k T)	2,0		1	a^2_{k} $k=1$					
2 _ [$\left \frac{p_2}{2}\right = \left $	grup	$2 = \frac{1}{2}$	-	$\frac{1}{2} \frac{2}{2} \frac{3}{2} \frac{n}{2} \frac{n}{2} \frac{1}{2} \frac{1}$	$r_g * T_1$				
p_1 ((p_1)		(0.97461	1 * Ca * a,	$p_1 \sim p_1 \sim p_1$					
	-									
		(-	\times ($\sqrt{-2/k}$	$\sum_{k=1}^{k/k-1}$					
		$\underline{P_2}$	= 1 - grupo2	$2*\left \frac{P_2}{2}\right $						
		p_1		$(p_1)_c$)					
Fluxo	Unitico		N N		/					
$(p_2/p_1) \leq$	$(P_2/P_1)_c$									
							_			
essão Crítica Rubiorit	Coeficiênte de Decestras (Cd)	Vazão Crítica (Ocolorit (MMcold)	Regime de Sub Critico	grupo 2	Razão de Operação (PoluPoulo)	Pressão do Choko Poio			_	
549	0,865	1,12	Sub Critico		1,0000	1500	r			
549	0,865	1,12	Sub Critico	0,0307	0,7985	1500	L	Gerar Dados		
549 549	0,865	1,12	Critico	0,1227	0,1509	2526				
549	0,865	1,12	Critico	0,4900	-0,0021	5052		Continuar		-
•								•		ſ
Dibujo 🕶	Autoformas) 🖾 📣 🔅 🖉	🔊 🖉 🗸 .	🥖 • 🗛 • 🚍 🚃	∃∎ @.				
Linke						······································				
LISCO										

Figura F.29 Planilha Eletrônica, Cálculo Pressão A Jusante do Choke

Uma vez determinados, esses valores de pressão são transferidos simultaneamente à planilha eletrônica orientada à sensibilidade do choke, *figura F.30*

Figura F.30 Planilha Eletrônica, Sensibilidade ao Choke

Se o sistema recebe entrada de dados do reservatório, imediatamente desdobra um formulário que permitirá o ingresso de valores de perfurações, *figura F.31*, clicamos em "aceitar" e passamos a uma planilha eletrônica para fazer as sensibilidades às perfurações, *figura F.32*.

Dados das Perfurações		×
Raio da Zona Compactada	0,063	Pés
Raio das Perfurações	0,021	Pés
Espessura de Perfurações	0,88	Pés
Espessura Perfurada	45,93	Pés
Tipo de Perfurações sobre ou Baixo Balanço	12	
Voltar Ace	eitar	Passar

Figura F.32 Planilha Eletrônica, Sensibilidade às perfurações

Na planilha eletrônica da *figura F.32*, clicar em *"continuar"*, aparecendo um quadro de diálogo "Nó Solução no Separador", *aceitar*.

Otimização da Pressão de Separação	×
Nodo Solução no Separador	
Aceptar	

Figura F.33 Quadro de Diálogo Nó Solução no Separador

Ingressando diretamente na planilha eletrônica. Tanto os resultados de teste como os de reservatório estão interligados a dita planilha e determinam a pressão de separação dentro do sistema total, *figura F.34*.

🔀 Microsoft Ex	cel - Análise Noda	l PUC - X1.xls						_ 8 ×
🖹 Archivo 🛛	<u>E</u> dición <u>V</u> er <u>I</u> nser	rtar <u>F</u> ormato <u>H</u> er	ramientas Da <u>t</u> os	Ve <u>n</u> tana <u>?</u>	l	Escriba una pregui	nta 💌	_ 8 ×
- 	e 🔁 🔤 🔍 🖗	۶ 🔏 🖻 🛍 • <	🖉 🗠 - 🗠 - 🖗	Σ - 🕃 🛃 🖁	fx 🛍 🚜 75	% • 🕄 🗸		
Arial	▼ 10 ▼	N K S E E	E = 0 9 E	% 000 * 00 * 00		• A • _	2 🔊	N ×
H32	▼ f _x					· - ·		
	PRI	ESSÃO NO SEPA	RADOR					-
Diämetto: (Polg) Vazão Geo (MMeord) 0,94 1,88 2,82 3,76 4,70 5,64 6,58 6,58 7,52 8,46 9,40	Pressão Fundo (pria) 10477 10212 9816 9230 8634 7849 6933 5879 4661 3183	2,445 Pressão na Cabega (peta) 88557 8309 7937 7944 8832 6106 5267 4321 3266 2045	24 Pressão do Choke (psia) 8557 8306 7926 7418 6781 6016 5114 4057 2744 611	3 Pressão Separador (peia) 8557 8306 7926 7926 7931 6781 6015 5112 4055 2740 582		Gerar Dados definir Continuar		
- 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000		Efeito da Pr	essão de Sep	arador				
				<i>"</i>				
Di <u>b</u> ujo ▼ 🕞 4	Autoformas 🔹 🔪 👌		🕄 🔝 🔜 🖄 •	· _2 • <u>A</u> • ≡ ■				
Listo								

Figura F.34 Planilha Eletrônica, Sensibilidade Pressão no Separador

Clique em, "continuar"; aparece o quadro de diálogo "Nó Solução no Choke", figura F.35 dando o processo final do sistema, concentra-se no cálculo dos valores já sensibilizados nos distintos ambientes do programa, determinando assim os valores de produção otimizados, tais como a vazão de produção, pressão de fundo, pressão na cabeça, pressão a jusante do choke e a pressão de separador, 1500 psia para nosso caso de estudo, figura F.36.

🔀 Microsoft Ex	cel - Análise Noda	PUC - X1.xls				_ 8 ×
🖹 Archivo 🛛	<u>E</u> dición <u>V</u> er <u>I</u> nser	tar <u>F</u> ormato <u>H</u> er	ramientas Da <u>t</u> os	Ve <u>n</u> tana <u>?</u>	Escriba u	ina pregunta 🛛 🚽 🗗 🗙
0 🛩 🖬 🙆) 🔁 🖨 🖪 🖤	/ 🐰 🖻 🛍 • <	🌮 - Cl - 🖗	💄 Σ - 🔂 🛃	🕌 🎜 🛍 📣 75% 🗣	2
Arial	• 10 • 1	N <u>X s</u> = =	: : : : : : : : : : : : : : : : : : :	% 000 [◆] 00 →00	💷 💷 - 🕭 - 🗛	• . 🔹 \land 🕺 🤹
F32						
	T	ማዋናኖልብ እብ ርዝ	IOKE			_
	-	RESSIO NO CI.	IONL		Gerar Dados	
Diŝmatro (, Rola)		2.445	24	2		
Vazão	Pressão Fundo	Pressão na Cabeça	Pressão do Choke	Pressão Separador	Voltar	
Usc (MMschd)	(psia) 10477	(psia) 8557	(psia) 8557	(psia) 1500		
0,94	10212	8309	8306	1500 1501	Imprimir	
2.82	9290	7444	7418	1501		
3,76	8634	6832	6781	1502		
4,70	7849	6106	6016	1503		
5,64	6933	5267	5114	1504		
6,58	5879	4321	4057	1506		
7,52	4661	3266	2744	1508		
8,46	3183	2045	611	1510		
9,40				1512		
		ANÁL	ISE TOTAL DO	SISTEMA		
12000 -		;				
10000 -		+				
						-
•	- ·		· ·			
Di <u>b</u> ujo 🔹 🔓 🛛 A	A <u>u</u> toformas 🔹 🔨 🔌	. 🗆 🔿 🔮 ᆀ	्रे 🖳 🔜 🖄 •	• 🚄 • 🛕 • 🚍 🕯	≡ ☴ ◘	
Listo						

Figura F.36 Planilha Eletrônica, Análise Total Do Sistema de Produção

Os dados formam parte do documento de impressão *(planilha eletrônica, figura F.36)* que reflete os dados otimizados e a representação gráfica da *"Análise Total do Sistema", figura F.37.*

Figura F.37 Análise Total do Sistema de Produção

APÊNDICE G Sistemas e Conversões de Unidades

Variáveis e Parâmetros em Diversos Sistemas de Unidades

Variável ou parâmetro	SI	DARCY	PETROBRAS	AMERICANO
Comprimento	т	СТ	т	ft
Massa	kg	g	kg	lb
Temperatura absoluta	Κ	K	K	°R
Тетро	S	S	h	h
Permeabilidade	m^2	darcy	md	md
Pressão	Pa	atm	kgf/cm^2	psi
Viscosidade	Pa.s	ср	ср	ср
Vazão	m^3/s	$c m^3/s$	m^3/d	bbl/d
Volume	m^3	cm^3	m^3	bbl

Constante Universal dos Gases (R)

Unidade	$\frac{psi.ft^3}{mol-lb.°R}$	$\frac{lbf ft}{mol - lb^{\circ}R}$	$\frac{atmcm^3}{mol-g.\ K}$	$\frac{cal}{mol - g.K}$	$\frac{kg/cm^2 \cdot m^3}{mol - kg \cdot K}$
R	10,73	1.545	82,05	1,987	0,08478

°API

$$^{\circ}API = \frac{141,5}{d(60^{\circ}F)} - 131,5$$

ÁGUA

Ponto Triplo	Massa específica	Gradiente	Massa molecular
	@ 15,56 °C	@ 15,56 °C	
0,01 °C	999,014 kg/m^3	0,0999 kg/cm ² /m	18
32,018 °F	62,4 lb/ft^3	0,4331 <i>psi/ft</i>	
491,688 °R	8,34 <i>lb/gal</i>		
273,16 K	350 <i>lb/bbl</i>		

AR

Massa específica @ 15,56 °C	Massa molecular média
1,2232 kg/m^3	28,97
$1,2232 \ge 10^{-3} g/cm^3$	
$0,076362 \ lb/ft^3$	

TABELAS DE CONVERSÃO DE UNIDADES

Polegada (in)	Pé (ft)	Jarda (yard)	Milha americana (U.S. (mile)	Milímetro (mm)	Metro (m)
1	0,08333333	0,02777778	1,578283x10 ⁻⁵	25,4	0,0254
12	1	0,3333333	1,893939x10 ⁻⁴	304,8	0,3048
36	3	1	5,681818x10 ⁻⁴	914,4	0,9144
63.360	5.280	1.760	1	1.609.344	1.609,344
0,03937008	3,280840x10 ⁻³	1,093613x10 ⁻³	6,213712x10 ⁻⁷	1	0.001
39,37008	3,280840	1,093613	6,213712x10 ⁻⁴	1.000	1

Comprimento

Área

Polegada quadrada (in ²)	Pé quadrado (ft ²)	Jarda quadrada (square yard)	Acre (acre)	Milha quadrada (U.S. Square mile)	Metro quadrado (m ²)
1	6,94444x10 ⁻³	7,71605x10 ⁻⁴	1,59423x10 ⁻⁷	2,490977x10 ⁻¹⁰	6,4516x10 ⁻⁴
144	1	0,1111111	2,29568x10 ⁻⁵	3,587006x10 ⁻⁸	9,2903x10 ⁻²
1.296	9	1	2,06612x10 ⁻⁴	3,228306x10 ⁻⁷	0,8361274
6.272.640	43.560	4.840	1	0,0015625	4.046,856
4.014.489.600	27.878.400	3.097.600	640	1	2.589.988
1.550,0031	10,76391	1,195990	2,47105x10 ⁻⁴	3,861022x10 ⁻⁷	1

Volume

Polegada	Pé cúbico	Litro	<i>Metro cúbico</i> (m^3)	Galão cúbico (US Gallon)	Barril (bbl)
cubica (in	(<i>ft</i>)	(1)	(<i>m</i>)	(0.5.0000)	(001)
1 500	5,787037x10	0,01638/06	1,638/06x10 ⁻⁵	4,329004x10 ⁻⁵	1,030/2x10
1.728	l	28,31685	0,02831685	7,480520	0,1781076
61,02374	0,03531467	1 000	0,001	0,2641720	6,28981x10
61.023,74	35,31467	1.000	1	264,1720	6,289810
231,0000	0,1336806	3,785412	0,003785412	1	0,02380952
9.702,001	5,614584	158,9873	0,1589873	42	1

Massa

Onça (ounce)	Libra (lb)	Quilograma (kg)	Tonelada (ton)
1	0,0625	0,02834952	2,834959x10 ⁻⁵
16	1	0,4535924	4,535924x10 ⁻⁴
35,27396	2,204623	1	0,001
35.273,96	2.204,623	1.000	1
Pressão

Kgf/cm ²	kPa	Lbf/in ² (psi)	Atmosfera (atm)
1	98,06650	14,22334	0,9678411
0,01019716	1	0,1450377	0,009869233
0,07030695	6,894757	1	0,06804596
1,033227	101,3250	14,69595	1

Permeabilidade

Milidarcy (md)	darcy	m^2	cm^2
1	1×10^{-3}	9,86923x10 ⁻¹⁶	9,86923x10 ⁻¹²
1.000	1	9,86923x10 ⁻¹³	9,86923x10 ⁻⁹
101.325×10^{10}	$101,325 \times 10^{10}$	1	10^{4}
101,325x10 ⁹	101,325x10 ⁶	10-4	1

Viscosidade

Centipoise (cp)	Pacal-segundo (Pa.s)	dina.s/cm ²
1	1×10^{-3}	1×10^{-2}
1.000	1	10
100	0,1	1

Temperatura

de	para	Fórmula
° Fahrenheit	Kelvin	$T_k = (T_F + 459,67)/1,8$
° Rankine	Kelvin	$T_k = T_R / 1.8$
° Fahrenheit	° Rankine	$T_R = T_F + 459,67$
° Fahrenheit	° Celsius	$T_C = (T_F - 32)/1,8$
° Celsius	Kelvin	$T_k = T_C + 273,15$